


1.1

1.2

1.3

1.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.6

1.6.1

1.6.1.1

1.6.1.2

1.6.1.3

1.6.1.4

1.6.1.5

1.6.1.6

1.6.1.7

1.6.1.8

1.6.1.9

1.6.1.10

1.6.1.11

1.6.1.12

1.6.1.13

Table	of	Contents
Introduction

What	Is	a	Front-End	Developer?

Recap	of	Front-end	Dev	in	2017

In	2018	expect...

Part	I:	The	Front-End	Practice

Front-End	Jobs	Titles

Common	Web	Tech	Employed

Front-End	Dev	Skills

Front-End	Devs	Develop	For...

Front-End	on	a	Team

Generalist/Full-Stack	Myth

Front-End	interview	questions

Front-End	Job	Boards

Front-End	Salaries

How	FDs	Are	Made

Part	II:	Learning	Front-End	Dev

Self	Directed	Learning

Learn	Internet/Web

Learn	Web	Browsers

Learn	DNS

Learn	HTTP/Networks

Learn	Web	Hosting

Learn	General	Front-End	Dev

Learn	UI/Interaction	Design

Learn	HTML	&	CSS

Learn	SEO

Learn	JavaScript

Learn	Web	Animation

Learn	DOM,	BOM	&	jQuery

Learn	Web	Fonts,	Icons,	&	Images

2



1.6.1.14

1.6.1.15

1.6.1.16

1.6.1.17

1.6.1.18

1.6.1.19

1.6.1.20

1.6.1.21

1.6.1.22

1.6.1.23

1.6.1.24

1.6.1.25

1.6.1.26

1.6.1.27

1.6.1.28

1.6.1.29

1.6.1.30

1.6.1.31

1.6.1.32

1.6.1.33

1.6.1.34

1.6.1.35

1.6.1.36

1.6.1.37

1.6.1.38

1.6.1.39

1.6.2

1.6.2.1

1.6.3

1.6.4

1.7

1.7.1

1.7.2

1.7.3

Learn	Accessibility

Learn	Web/Browser	APIs

Learn	JSON

Learn	JS	Templates

Learn	Static	Site	Generators

Learn	Computer	Science	via	JS

Learn	Front-End	App	Architecture

Learn	Data	API	(i.e.	JSON/REST)	Design

Learn	React

Learn	State	Management

Learn	Progressive	Web	App

Learn	JS	API	Design

Learn	Web	Dev	Tools

Learn	Command	Line

Learn	Node.js

Learn	JS	Modules

Learn	JS	Module	loaders/bundlers

Learn	Package	Managers

Learn	Version	Control

Learn	Build	&	Task	Automation

Learn	Site	Performance	Optimization

Learn	Testing

Learn	Headless	Browsers

Learn	Offline	Dev

Learn	Web/Browser/App	Security

Learn	Multi-Device	Dev	(e.g.,	RWD)

Directed	Learning

Front-End	Schools,	Courses,	&	Bootcamps

Front-End	Devs	to	Learn	From

Newsletters,	News,	&	Podcasts

Part	III:	Front-End	Dev	Tools

Doc/API	Browsing	Tools

SEO	Tools

Prototyping	&	Wireframing	Tools

3



1.7.4

1.7.5

1.7.6

1.7.7

1.7.8

1.7.9

1.7.10

1.7.11

1.7.12

1.7.13

1.7.14

1.7.15

1.7.16

1.7.17

1.7.18

1.7.19

1.7.20

1.7.21

1.7.22

1.7.23

1.7.24

1.7.25

1.7.26

1.7.27

1.7.28

1.7.29

1.7.30

1.7.31

1.7.32

1.7.33

1.7.34

1.7.35

1.7.36

Diagramming	Tools

HTTP/Network	Tools

Code	Editing	Tools

Browser	Tools

HTML	Tools

CSS	Tools

DOM	Tools

JavaScript	Tools

Static	Site	Generators	Tools

Accessibility	Dev	Tools

App	Frameworks	(Desktop,	Mobile	etc.)	Tools

State	Management	Tools

Progressive	Web	App	Tools

GUI	Development/Build	Tools

Templating/Data	Binding	Tools

UI	Widget	&	Component	Toolkits

Data	Visualization	(e.g.,	Charts)	Tools

Graphics	(e.g.,	SVG,	canvas,	webgl)	Tools

Animation	Tools

JSON	Tools

Placeholder	Images/Text	Tools

Testing	Tools

Front-end	Data	Storage	Tools

Module/Package	Loading	Tools

Module/Package	Repo.	Tools

Hosting	Tools

Project	Management	&	Code	Hosting

Collaboration	&	Communication	Tools

CMS	Hosted/API	Tools

BAAS	(for	Front-End	Devs)	Tools

Offline	Tools

Security	Tools

Tasking	(aka	Build)	Tools

4



1.7.37

1.7.38

1.7.39

1.7.40

1.7.41

1.8

Deployment	Tools

Site/App	Monitoring	Tools

JS	Error	Monitoring	Tools

Performance	Tools

Tools	for	Finding	Tools

Sponsored	by	Frontend	Masters

5



Front-End	Developer	Handbook	2018
Written	by	Cody	Lindley	sponsored	by	—	Frontend	Masters

Introduction

6

http://codylindley.com/
https://frontendmasters.com/


This	is	a	guide	that	anyone	could	use	to	learn	about	the	practice	of	front-end	development.	It
broadly	outlines	and	discusses	the	practice	of	front-end	engineering:	how	to	learn	it	and
what	tools	are	used	when	practicing	it	in	2018.

It	is	specifically	written	with	the	intention	of	being	a	professional	resource	for	potential	and
currently	practicing	front-end	developers	to	equip	themselves	with	learning	materials	and
development	tools.	Secondarily,	it	can	be	used	by	managers,	CTOs,	instructors,	and	head
hunters	to	gain	insights	into	the	practice	of	front-end	development.

The	content	of	the	handbook	favors	web	technologies	(HTML,	CSS,	DOM,	and	JavaScript)
and	those	solutions	that	are	directly	built	on	top	of	these	open	technologies.	The	materials
referenced	and	discussed	in	the	book	are	either	best	in	class	or	the	current	offering	to	a
problem.

The	book	should	not	be	considered	a	comprehensive	outline	of	all	resources	available	to	a
front-end	developer.	The	value	of	the	book	is	tied	up	in	a	terse,	focused,	and	timely	curation
of	just	enough	categorical	information	so	as	not	to	overwhelm	anyone	on	any	one	particular
subject	matter.

The	intention	is	to	release	an	update	to	the	content	yearly.

The	handbook	is	divided	into	the	following	three	parts:

Part	I.	The	Front-End	Practice
Part	one	broadly	describes	the	practice	of	front-end	engineering.

Part	II:	Learning	Front-End	Development
Part	two	identifies	self-directed	and	direct	resources	for	learning	to	become	a	front-end
developer.

Part	III:	Front-End	Development	Tools
Part	three	briefly	explains	and	identifies	tools	of	the	trade.

Download	a	.pdf,	.epub,	or	.mobi	file	from:

https://www.gitbook.com/book/frontendmasters/front-end-developer-handbook-
2018/details

Introduction

7

https://www.gitbook.com/book/frontendmasters/front-end-developer-handbook-2018/details


Contribute	content,	suggestions,	and	fixes	on	github:

https://github.com/FrontendMasters/front-end-handbook-2018

This	work	is	licensed	under	a	Creative	Commons	Attribution-NonCommercial-NoDerivs	3.0
Unported	License.

Introduction

8

https://github.com/FrontendMasters/front-end-handbook-2018
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


What	Is	a	Front-End	Developer?
Front-end	web	development,	also	known	as	client-side	development	is	the	practice	of
producing	HTML,	CSS	and	JavaScript	for	a	website	or	Web	Application	so	that	a	user
can	see	and	interact	with	them	directly.	The	challenge	associated	with	front	end
development	is	that	the	tools	and	techniques	used	to	create	the	front	end	of	a	website
change	constantly	and	so	the	developer	needs	to	constantly	be	aware	of	how	the	field
is	developing.

The	objective	of	designing	a	site	is	to	ensure	that	when	the	users	open	up	the	site	they
see	the	information	in	a	format	that	is	easy	to	read	and	relevant.	This	is	further
complicated	by	the	fact	that	users	now	use	a	large	variety	of	devices	with	varying
screen	sizes	and	resolutions	thus	forcing	the	designer	to	take	into	consideration	these
aspects	when	designing	the	site.	They	need	to	ensure	that	their	site	comes	up	correctly
in	different	browsers	(cross-browser),	different	operating	systems	(cross-platform)	and
different	devices	(cross-device),	which	requires	careful	planning	on	the	side	of	the
developer.

https://en.wikipedia.org/wiki/Front-end_web_development

HTML,	CSS,	&	JavaScript:

A	front-end	developer	architects	and	develops	websites	and	applications	using	web
technologies	(i.e.,	HTML,	CSS,	DOM,	and	JavaScript),	which	run	on	the	Open	Web	Platform
or	act	as	compilation	input	for	non-web	platform	environments	(i.e.,	React	Native).

Image	source:	https://www.upwork.com/hiring/development/front-end-developer/

Typically,	a	person	enters	into	the	field	of	front-end	development	by	learning	to	develop
HTML,	CSS,	and	JavaScript	which	commonly	runs	in	web	browser	but	can	also	run	in	a
headless	browser,	WebView,	or	as	compilation	input	for	a	native	runtime	environment.

What	Is	a	Front-End	Developer?

9

https://en.wikipedia.org/wiki/Front-end_web_development
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://en.wikipedia.org/wiki/Open_Web_Platform
https://facebook.github.io/react-native/
https://www.upwork.com/hiring/development/front-end-developer/
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Headless_browser
http://developer.telerik.com/featured/what-is-a-webview/


These	four	run	times	scenarios	are	explained	below.

Web	Browsers	(most	common)

A	web	browser	is	software	used	to	retrieve,	present,	and	traverse	information	on	the	WWW.
Typically,	browsers	run	on	a	desktop	or	laptop	computer,	tablet,	or	phone,	but	as	of	late	a
browser	can	be	found	on	just	about	anything	(i.e,	on	a	fridge,	in	cars,	etc.).

The	most	common	web	browsers	are	(shown	in	order	of	most	used	first):

Chrome
Safari
Internet	Explorer	(Note:	not	Edge,	referring	to	IE	9	to	IE	11)
Firefox
Edge

Headless	Browsers

Headless	browsers	are	a	web	browser	without	a	graphical	user	interface	that	can	be
controlled	from	a	command	line	interface	programmatically	for	the	purpose	of	web	page
automation	(e.g.,	functional	testing,	scraping,	unit	testing,	etc.).	Think	of	headless	browsers
as	a	browser	that	you	can	run	from	the	command	line	that	can	retrieve	and	traverse	web
pages.

The	most	common	headless	browsers	are:

Headless	Chromium
Zombie
slimerjs

Webviews

Webviews	are	used	by	a	native	OS,	in	a	native	application,	to	run	web	pages.	Think	of	a
webview	like	an	iframe	or	a	single	tab	from	a	web	browser	that	is	embedded	in	a	native
application	running	on	a	device	(e.g.,	iOS,	android,	windows).

The	most	common	solutions	for	webview	development	are:

Cordova	(typically	for	native	phone/tablet	apps)
NW.js	(typically	used	for	desktop	apps)
Electron	(typically	used	for	desktop	apps)

Native	from	Web	Tech

What	Is	a	Front-End	Developer?

10

https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers#Summary_tables
http://www.google.com/chrome/
http://www.apple.com/safari/
https://en.wikipedia.org/wiki/Internet_Explorer
http://dev.modern.ie/
https://www.mozilla.org/firefox/
https://www.microsoft.com/en-us/windows/microsoft-edge
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://github.com/assaf/zombie
http://slimerjs.org/
http://developer.telerik.com/featured/what-is-a-webview/
http://developer.telerik.com/featured/what-is-a-webview/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
http://developer.android.com/reference/android/webkit/WebView.html
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.webview.aspx
http://developer.telerik.com/featured/what-is-a-webview/
https://cordova.apache.org/
https://github.com/nwjs/nw.js
http://electron.atom.io/


Eventually,	what	is	learned	from	web	browser	development	can	be	used	by	front-end
developers	to	craft	code	for	environments	that	are	not	fueled	by	a	browser	engine.	As	of
late,	development	environments	are	being	dreamed	up	that	use	web	technologies	(e.g.,	CSS
and	JavaScript),	without	web	engines,	to	create	native	applications.

Some	examples	of	these	environments	are:

Flutter
React	Native

NOTES:

Make	sure	you	are	clear	what	exactly	is	meant	by	the	"web	platform".	Read,	"The	Web
platform:	what	it	is"	and	read	the,	"Open	Web	Platform"	Wikipedia	page.	Explore	the	many
technologies	that	make	up	the	web	platform.

What	Is	a	Front-End	Developer?

11

https://flutter.io/
https://facebook.github.io/react-native/
http://tess.oconnor.cx/2009/05/what-the-web-platform-is
https://en.wikipedia.org/wiki/Open_Web_Platform
https://platform.html5.org/


Recap	of	Front-end	Development	in	2017
HTML	5.2	is	done.
It	was	a	banner	year	for	Vue.js	in	terms	of	adoption	and	popularity.	No	question	about	it.
The	great	divide	between	a	front-end	HTML	&	CSS	developer	v.s.	front-end	application
developer	is	realized/verbalized.
Being	a	Front-end	JavaScript	developer	who	builds	applications	using	web	technologies
continues	to	get	better	and	worse.
This	year	seemed	fuller	than	most	of	app/framework	solutions	trying	to	contend	with	the
mainstream	JavaScript	app	tools	(i.e.	React,	Angular,	and	Vue	etc...)	Let	me	list	them
for	you.	Moon,	Marko,	Hyperapp,	Quasar	Framework,	POI,	frint,	BunnyJS,	jsblocks,
Sapper,	Stimulus,	Choo,
This	was	the	year	that	jsbin	and	jsfiddle	evolved	to	things	like	StackBliz	and
codeSandbox.	Making	it	dead	simple	to	share	a	working	app.
React	continues	to	be	flattered	by	things	like	preact,	inferno,	nerv,	dva,	and	rax.
Cheatsheets	got	organized	with	devhints.io.
We	figured	out	that	the	correct	pattern	for	an	app	boilerplate/cli	tool	is	something	very
opinionated	like	React	Create	App	with	the	ability	to	escape	from	it	when	needed.
Most	developers	found	that	the	combination	of	a	really	good	code	editor,	eslint,	and	now
prettier	make	writing	code	faster,	easier,	pleasurable.
CSS	Flexbox	and	Grid	gain	browser	support	and	thus	more	developers	are	paying
attention	to	both.
We	get,	a	headless	chrome,	finally.
You	no	longer	need	Less	or	Sass	to	do	amazing	things	with	CSS.
CSS	revolutions/revolts	are	under	way.
JavaScript	object	explorer	tools	have	arrived,	JavaScript	Array	Explorer	and	JavaScript
Object	Explorer.	This	is	a	handy	interface	pattern	for	learning	about	JavaScript	data
types	(e.g.	Objects	and	Arrays)	and	their	methods.
The	Chrome	web	browser	dominates	the	market	and	people	begin	to	fear	the	past
might	be	repeating	itself.
Brave	becomes	the	most	pleasant	and	safest	way	to	browser	the	internet.
PhantomJS	is	no	longer	maintained,	Headless	Chrome	and	Puppeteer	step	in.
Prettier	comes	from	left	field	and	becomes	a	staple	for	development.
A	whole	lot	of	developers	adopt	static	type	checking	for	mostly	subjective	reasons	or
band	wagon	emotions.	Some	sell	out	completely	to	Typescript	and	the	Microsoft	way	of
doing	things	while	others	take	on	a	slower	approach	with	Flow.	One	thing	is	for	sure,
most	developers	don't	need	types,	they	are	simply	complicating	already	complex
problems	and	solutions.	Like	most	things,	most	of	this	trend	is	subjective	dogma	not

Recap	of	Front-end	Dev	in	2017

12

https://www.w3.org/blog/2017/12/html-5-2-is-done-html-5-3-is-coming/
https://vuejs.org/
https://www.npmjs.com/npm/state-of-javascript-frameworks-2017-part-1
https://stateofjs.com/2017/front-end/results/
https://medium.com/@jerrylowm/the-death-of-front-end-developers-803a95e0f411
https://medium.com/@mandy.michael/is-there-any-value-in-people-who-cannot-write-javascript-d0a66b16de06
https://blog.logrocket.com/the-increasing-nature-of-frontend-complexity-b73c784c09ae
https://stateofjs.com/2017/front-end/results
http://moonjs.ga/docs/overview.html
https://markojs.com/
https://github.com/hyperapp/hyperapp
http://quasar-framework.org/
https://poi.js.org
https://frint.js.org/
https://bunnyjs.com/
http://jsblocks.com/
https://sapper.svelte.technology/
https://github.com/stimulusjs/stimulus
https://github.com/choojs/choo
https://stackblitz.com/
https://codesandbox.io/
https://preactjs.com/
https://infernojs.org/
https://github.com/NervJS/nerv
https://github.com/dvajs/dva
https://github.com/alibaba/rax
https://devhints.io/
https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-eject
https://code.visualstudio.com/
https://eslint.org/
https://github.com/prettier/prettier
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://rachelandrew.co.uk/archives/2016/03/30/should-i-use-grid-or-flexbox/
https://blog.chromium.org/2017/05/chrome-59-beta-headless-chromium-native.html
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://shoelace.style
http://cssnext.io/features/
http://ryanogles.by/css/javascript/2017/05/25/the-state-of-css.html
https://sdras.github.io/array-explorer/
https://sdras.github.io/object-explorer/
http://gs.statcounter.com/browser-market-share
https://www.theverge.com/2018/1/4/16805216/google-chrome-only-sites-internet-explorer-6-web-standards
https://brave.com/
https://www.infoq.com/news/2017/04/Phantomjs-future-uncertain
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://github.com/GoogleChrome/puppeteer
https://prettier.io/
https://github.com/Microsoft/TypeScript
https://github.com/facebook/flow


objective	value.
Static	site	generators	&	API	CMS	tools	aka	Headless	CMS's	are	now	on	most
developers	radar.
Web	components	still	lurking	and	wait	for	significant	traction	by	developers	that	might
never	come	to	be.
JavaScript	settled	and	CSS	erupt	and	everyone	will	cry	fatigue	by	this	time	next	year.
A	lot	of	people	stop	doing	CSS	in	CSS	and	move	to	CSS	in	JS	when	building
application	using	component	trees.
Yarn	seems	to	have	filled	a	need,	because	a	lot	of	people	jump	the	npm	ship.	However,
the	real	value	of	Yarn	is	the	fact	that	it	brings	competition	to	NPM.	Making	npm	better.
A	new	video	format	for	Interactive	coding	screencasts	(recording	of	working	in	a	live
editor	that	you	can	edit	too)	becomes	a	real	thing	with	Scrimba.
Most	people	begin	to	see	the	correlation	between	component	architectures	and	atomic
design.
And	so	it	begins	that	ES	modules	will	be	part	of	the	browser	and	if	used	a	backup	plan
will	be	required	(i.e.	a	bundle	from	something	like	webpack).
MVC	frameworks	are	on	the	outs.
Developing	and	displaying	React	components	outside	of	your	applications	is	made
popular	by	tools	like	Bluekit,	Storybook,	React	Styleguidist,	and	bit.
Getting	a	front-end	job	in	2017	is	about	experience,	which	is	displayed	from	personal
projects	and	a	developers	Github	account.
Preloading	resources	(CSS,	JavaScript,	Media	etc..)	from	HTML	documents	arrives.
Cypress	arrives	as	a	complete	testing	solution	and	hopefully	testing	will	get	better	as
end	to	end	testing	becomes	the	focus	for	app	code.
WebAssembly	support	now	shipping	in	all	major	browsers
Webpack	dominates,	and	then	competitors	show	up.
React	16	aka	fiber	is	released.
React	begins	to	rival	jQuery	in	popularity	in	certain	contexts.
React	clearly	is	the	most	used	tool	for	building	UI's	with	state.
Facebook	sheds	its	React	BSD	license	for	the	MIT	license	(same	for	Jest,	Flow,
Immutable.js,	and	GraphQL)
GraphQL	got	hot	in	2017.
Facebook	continues	to	take	charge	in	the	development	space	with	forthcoming	tools	like
prepack.io.
As	expected	ECMA-262	edition	8	is	released.
React	Router	finally	stabilizes.
All	modern	browsers	pretty	much	now	support	ECMAScript	2015	(aka	ES6).
Async	JavaScript	functions	start	getting	some	serious	attention	and	usage.	Mostly
because	all	modern	browsers	now	support	Async	functions.
Mobile	development,	still	too	hard.	A	strong	rebellion	advocating	the	web	platform	as	a

Recap	of	Front-end	Dev	in	2017

13

https://www.staticgen.com/
https://en.wikipedia.org/wiki/Headless_CMS
http://michelebertoli.github.io/css-in-js/
https://speakerdeck.com/vjeux/react-css-in-js
https://levelup.gitconnected.com/a-brief-history-of-css-in-js-how-we-got-here-and-where-were-going-ea6261c19f04
https://yarnpkg.com/en/
https://scrimba.com/about
https://en.wikipedia.org/wiki/Component-based_software_engineering
http://patternlab.io/
https://philipwalton.com/articles/deploying-es2015-code-in-production-today/
https://medium.com/dev-channel/es6-modules-in-chrome-canary-m60-ba588dfb8ab7
https://caniuse.com/#feat=es6-module
https://github.com/WebReflection/ecma
https://codeburst.io/javascript-trends-in-2018-3fb0077259
http://bluekit.blueberry.io/
https://storybook.js.org/
https://bitsrc.io/
https://research.hackerrank.com/developer-skills/2018/
https://developer.mozilla.org/en-US/docs/Web/HTML/Preloading_content
https://www.w3.org/TR/preload/
https://www.cypress.io/how-it-works/
https://blog.mozilla.org/blog/2017/11/13/webassembly-in-browsers/
https://webpack.js.org/
https://github.com/parcel-bundler/parcel
https://reactjs.org/blog/2017/09/26/react-v16.0.html
https://twitter.com/npmjs/status/949017852702543876
https://www.npmjs.com/npm/state-of-javascript-frameworks-2017-part-1
https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
https://code.facebook.com/posts/300798627056246/relicensing-react-jest-flow-and-immutable-js/
https://dev-blog.apollodata.com/2017-the-year-in-graphql-124a050d04c6
https://graphcms.com/
https://www.graphql.com/case-studies/
https://code.facebook.com/projects/
https://prepack.io/
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://reacttraining.com/react-router/
http://kangax.github.io/compat-table/es6/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://caniuse.com/#search=async%20fun
https://flutter.io/
https://facebook.github.io/react-native/
https://www.nativescript.org/
https://blog.mozilla.org/firefox/progressive-web-apps-whats-big-deal/


solution	to	the	pain	gained	momentum	this	year.

Recap	of	Front-end	Dev	in	2017

14

https://joreteg.com/blog/betting-on-the-web


In	2018	expect...
Nothing	will	change	or	slow	the	usage	or	popularity	of	React	for	many	years	to	come.
GraphQL	will	replace	a	lot	of	REST	API's	this	year.
The	web	will	continue	to	become	more	native-like	with	offline	capabilities	and	seamless
mobile	experiences.
HTML	5.3	is	coming.
Keep	an	eye	on	turbo,	a	blazing	fast	NPM	client.
Expect	to	learn	and	use	CSS	transforms	3d,	CSS	transitions,	CSS	flexbox,	CSS	filters,
CSS	grid
JavaScript	usage	will	continue	to	grow	with	no	slowdown	in	sight.
Still	waiting	on	Web	Assembly	to	peak.	This	will	likely	require	tooling.
Universal/isomorphic	JavaScript	solutions	continue	to	evolve	e.g.	next.js	and	Sapper.
Web	components	still	lurk	and	wait	for	significant	traction	from	developers.
I	believe	the	end	is	in	sight	for	CSS	pre-processors	as	PostCSS,	CSSnext,	and	CSS	in
JS	take	over.
Older	server	centric	application	patterns	show	up	again	but	with	a	new	spin.	The
pendulum	could	start	to	swinging	away	from	strick	SPA	applications.	People	will	begin	to
pull	back	on	the	complexity	of	single	page	applications	and	return	to	things	like	pjax	(A
mix	of	SPA	and	Server-side	Rendering.	See	https://stimulusjs.org).
Progressive	Web	Applications	hopefully	will	catch	fire.	If	they	don't,	I	fear	they	never	will.
At	least	not	in	there	current	form.
"Chatbots	created	on	the	basis	of	artificial	intelligence	and	neural	networks	will	continue
to	evolve	helping	to	increase	communication	online.	I	wonder	what	it	will	lead	to,	but	this
is	unconditional	web	development	trends	2018".	Nods.
Vue.js	usage	will	likely	overtake	all	Angular	usage.
AR/AV,	AI,	and	chat	bots	will	continue	to	evolve	and	find	there	sweet	spot.
JavaScript	Symbol	and	Generators	will	likely	go	unnoticed	by	most	front-end
developers.
More	developers	will	divorce	themselves	from	plain	JavaScript	and	try	to	marry	another.
But,	just	like	in	marital	divorce	one	always	takes	most	of	the	same	problems	with	them
to	the	greener	grass	and	little	actually	changes.	Preferences	and	values	just	get	re-
prioritized	and	history	will	repeat	itself.
Webpack	4	will	happen,	and	be	better,	due	to	competition!
Continued	exploration	for	the	ideal	CSS	solution	for	a	tree	of	UI	components	will	not
cease.
State	management	gets	a	reset	and	people	start	to	simplify.	Hopefully,	this	will	be	the
year	for	solutions	like	mobx	to	shine.

In	2018	expect...

15

https://medium.freecodecamp.org/rest-apis-are-rest-in-peace-apis-long-live-graphql-d412e559d8e4
https://www.w3.org/blog/2017/12/html-5-2-is-done-html-5-3-is-coming/
https://medium.com/@ericsimons/introducing-turbo-5x-faster-than-yarn-npm-and-runs-natively-in-browser-cc2c39715403
https://caniuse.com/#feat=transforms3d
https://caniuse.com/#search=transitions
https://caniuse.com/#search=flex
https://caniuse.com/#feat=css-filters
https://caniuse.com/#search=grid
https://insights.stackoverflow.com/survey/2017#technology-programming-languages
https://insights.stackoverflow.com/survey/2017#technology-most-popular-languages-by-occupation
http://webassembly.org/
https://webassembly.studio
https://github.com/zeit/next.js
https://sapper.svelte.technology/
https://css-tricks.com/future-front-end-web-development/#article-header-id-7
https://github.com/postcss
http://cssnext.io/
https://unpoly.com
https://github.com/turbolinks/turbolinks
https://goiabada.blog/can-you-build-a-single-page-application-without-a-front-end-framework-6799cee03750
http://triskweline.de/unpoly-rugb/#/41
https://github.com/stimulusjs/stimulus
http://blog.bloomca.me/2018/02/04/spa-is-not-silver-bullet.html
https://m.signalvnoise.com/stimulus-1-0-a-modest-javascript-framework-for-the-html-you-already-have-f04307009130
https://m.signalvnoise.com/stimulus-1-0-a-modest-javascript-framework-for-the-html-you-already-have-f04307009130
https://github.com/defunkt/jquery-pjax
https://stimulusjs.org/handbook/introduction
https://developers.google.com/web/progressive-web-apps/
http://merehead.com/blog/web-development-trends-2018/
http://www.npmtrends.com/@angular/core-vs-angular-vs-react-vs-vue
https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-artificial-intelligence-ai-chatbot-new-language-research-openai-google-a7869706.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
http://elm-lang.org/
https://www.typescriptlang.org/index.html
https://reasonml.github.io/
http://coffeescript.org/
https://css-in-js-playground.com/?theme=light
https://www.youtube.com/watch?v=kp-NOggyz54
https://github.com/thejameskyle/unstated
https://github.com/mobxjs/mobx


In	2018	expect...

16

https://frontendmasters.com/


Part	I.	The	Front-End	Practice
Part	one	broadly	describes	the	practice	of	front-end	engineering.

Part	I:	The	Front-End	Practice

17



Front-End	Jobs	Titles
Below	is	a	list	and	description	of	various	front-end	job	titles.	The	common,	or	most	used	(i.e.,
generic),	title	for	a	front-end	developer	is,	"front-end	developer"	or	"front-end	engineer".	Note
that	any	job	that	contains	the	word	"front-end",	"client-side",	"web	UI",	"HTML",	"CSS",	or
"JavaScript"	typically	infers	that	a	person	has	some	degree	of	HTML,	CSS,	DOM,	and
JavaScript	professional	know	how.

Front-End	Developer

The	generic	job	title	that	describes	a	developer	who	is	skilled	to	some	degree	at	HTML,
CSS,	DOM,	and	JavaScript	and	implementing	these	technologies	on	the	web	platform.

Front-End	Engineer	(aka	JavaScript	Developer	or	Full-stack	JavaScript	Developer)

The	job	title	given	to	a	developer	who	comes	from	a	computer	science,	engineering,
background	and	is	using	these	skills	to	work	with	front-end	technologies.	This	role	typically
requires	a	computer	science	degree	and	years	of	software	development	experience.	When
the	word	"JavaScript	Application"	is	included	in	the	job	title,	this	will	denote	that	the
developer	should	be	an	advanced	JavaScript	developer	possessing	advanced
programming,	software	development,	and	application	development	skills	(i.e	has	years	of
experience	building	front-end	applications).

CSS/HTML	Developer

The	front-end	job	title	that	describes	a	developer	who	is	skilled	at	HTML	and	CSS,	excluding
JavaScript	and	Application	know	how.

Front-End	Web	Designer

When	the	word	"Designer"	is	included	in	the	job	title,	this	will	denote	that	the	designer	will
posses	front-end	skills	(i.e.,	HTML	&	CSS)	but	also	professional	design	(Visual	Design	and
Interaction	Design)	skills.

Front-End	Jobs	Titles

18



Web/Front-End	User	Interface	(aka	UI)	Developer/Engineer

When	the	word	"Interface"	or	"UI"	is	included	in	the	job	title,	this	will	denote	that	the
developer	should	posses	interaction	design	skills	in	addition	to	front-end	developer	skills	or
front-end	engineering	skills.

Mobile/Tablet	Front-End	Developer

When	the	word	"Mobile"	or	"Tablet"	is	included	in	the	job	title,	this	will	denote	that	the
developer	has	experience	developing	front-ends	that	run	on	mobile	or	tablet	devices	(either
natively	or	on	the	web	platform,	i.e.,	in	a	browser).

Front-End	SEO	Expert

When	the	word	"SEO"	is	included	in	the	job	title,	this	will	denote	that	the	developer	has
extensive	experience	crafting	front-end	technologies	towards	an	SEO	strategy.

Front-End	Accessibility	Expert

When	the	word	"Accessibility"	is	included	in	the	job	title,	this	will	denote	that	the	developer
has	extensive	experience	crafting	front-end	technologies	that	support	accessibility
requirements	and	standards.

Front-End	Dev.	Ops

When	the	word	"DevOps"	is	included	in	the	job	title,	this	will	denote	that	the	developer	has
extensive	experience	with	software	development	practices	pertaining	to	collaboration,
integration,	deployment,	automation,	and	measurement.

Front-End	Testing/QA

When	the	word	"Testing"	or	"QA"	is	included	in	the	job	title,	this	will	denote	that	the
developer	has	extensive	experience	testing	and	managing	software	that	involves	unit
testing,	functional	testing,	user	testing,	and	A/B	testing.

NOTES:

Front-End	Jobs	Titles

19



If	you	come	across	the	"Full	Stack"	or	the	generic	"Web	Developer"	terms	in	job	titles	these
words	may	be	used	by	an	employer	to	describe	a	role	that	is	responsible	for	all	aspects	of
web/app	development,	i.e.,	both	front-end	(potentially	including	design)	and	back-end.

Front-End	Jobs	Titles

20



Web	Technologies	Employed	by	Front-End
Developers

Image	source:	http://www.2n2media.com/compare-front-end-development-and-back-end-
development

The	following	core	web	technologies	are	employed	by	front-end	developers	(consider
learning	them	in	this	order):

1.	 Hyper	Text	Markup	Language	(aka	HTML)
2.	 Cascading	Style	Sheets	(aka	CSS)
3.	 Uniform	Resource	Locators	(aka	URLs)
4.	 Hypertext	Transfer	Protocol	(aka	HTTP)
5.	 JavaScript	Programming	Language	(aka	ECMAScript	262)
6.	 JavaScript	Object	Notation	(aka	JSON)
7.	 Document	Object	Model	(aka	DOM)
8.	 Web	APIs	(aka	HTML5	and	friends	or	Browser	APIs)
9.	 Web	Content	Accessibility	Guidelines	(aka	WCAG)	&	Accessible	Rich	Internet

Applications	(aka	ARIA)

For	a	comprehensive	list	of	all	web	related	specifications	have	a	look	at	platform.html5.org.

The	nine	technologies	just	mentioned	are	defined	below	along	with	a	link	to	the	relevant
documentation	and	specification	for	each	technology.

Hyper	Text	Markup	Language	(aka	HTML)

Common	Web	Tech	Employed

21

http://www.2n2media.com/compare-front-end-development-and-back-end-development
https://platform.html5.org/


HyperText	Markup	Language,	commonly	referred	to	as	HTML,	is	the	standard	markup
language	used	to	create	web	pages.	Web	browsers	can	read	HTML	files	and	render
them	into	visible	or	audible	web	pages.	HTML	describes	the	structure	of	a	website
semantically	along	with	cues	for	presentation,	making	it	a	markup	language,	rather	than
a	programming	language.

—	Wikipedia

Most	relevant	specifications	/	documentation:

All	W3C	HTML	Spec
The	elements	of	HTML	from	the	Living	Standard
Global	attributes
HTML	5.2	from	W3C
HTML	attribute	reference
HTML	element	reference
The	HTML	Syntax	from	the	Living	Standard

Cascading	Style	Sheets	(aka	CSS)

Cascading	Style	Sheets	(CSS)	is	a	style	sheet	language	used	for	describing	the	look
and	formatting	of	a	document	written	in	a	markup	language.	Although	most	often	used
to	change	the	style	of	web	pages	and	user	interfaces	written	in	HTML	and	XHTML,	the
language	can	be	applied	to	any	kind	of	XML	document,	including	plain	XML,	SVG	and
XUL.	Along	with	HTML	and	JavaScript,	CSS	is	a	cornerstone	technology	used	by	most
websites	to	create	visually	engaging	webpages,	user	interfaces	for	web	applications,
and	user	interfaces	for	many	mobile	applications.

—	Wikipedia

Most	relevant	specifications	/	documentation:

All	W3C	CSS	Specifications
Cascading	Style	Sheets	Level	2	Revision	2	(CSS	2.2)	Specification
CSS	reference
Selectors	Level	3

Hypertext	Transfer	Protocol	(aka	HTTP)

The	Hypertext	Transfer	Protocol	(HTTP)	is	an	application	protocol	for	distributed,
collaborative,	hypermedia	information	systems.	HTTP	is	the	foundation	of	data
communication	for	the	World	Wide	Web.

—	Wikipedia

Common	Web	Tech	Employed

22

https://en.wikipedia.org/wiki/HTML
http://www.w3.org/standards/techs/html#w3c_all
https://html.spec.whatwg.org/multipage
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
http://w3c.github.io/html/
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://html.spec.whatwg.org/multipage/syntax.html#syntax
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://www.w3.org/Style/CSS/current-work#roadmap
https://drafts.csswg.org/css2/
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
http://www.w3.org/TR/css3-selectors/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol


Most	relevant	specifications:

Hypertext	Transfer	Protocol	--	HTTP/1.1
HTTP/2

Uniform	Resource	Locators	(aka	URL)

A	uniform	resource	locator	(URL)	(also	called	a	web	address)	is	a	reference	to	a
resource	that	specifies	the	location	of	the	resource	on	a	computer	network	and	a
mechanism	for	retrieving	it.	A	URL	is	a	specific	type	of	uniform	resource	identifier	(URI),
although	many	people	use	the	two	terms	interchangeably.	A	URL	implies	the	means	to
access	an	indicated	resource,	which	is	not	true	of	every	URI.	URLs	occur	most
commonly	to	reference	web	pages	(http),	but	are	also	used	for	file	transfer	(ftp),	email
(mailto),	database	access	(JDBC),	and	many	other	applications.

—	Wikipedia

Most	relevant	specifications:

Uniform	Resource	Locators	(URL)
URL	Living	Standard

Document	Object	Model	(aka	DOM)

The	Document	Object	Model	(DOM)	is	a	cross-platform	and	language-independent
convention	for	representing	and	interacting	with	objects	in	HTML,	XHTML,	and	XML
documents.	The	nodes	of	every	document	are	organized	in	a	tree	structure,	called	the
DOM	tree.	Objects	in	the	DOM	tree	may	be	addressed	and	manipulated	by	using
methods	on	the	objects.	The	public	interface	of	a	DOM	is	specified	in	its	application
programming	interface	(API).

—	Wikipedia

Most	relevant	specifications	/	documentation:

Document	Object	Model	(DOM)	Level	3	Events	Specification
DOM	Living	Standard
W3C	DOM4

JavaScript	Programming	Language	(aka	ECMAScript	262)

Common	Web	Tech	Employed

23

https://tools.ietf.org/html/rfc2616
http://httpwg.org/specs/rfc7540.html
https://en.wikipedia.org/wiki/Uniform_Resource_Locator
http://www.w3.org/Addressing/URL/url-spec.txt
https://url.spec.whatwg.org/
https://en.wikipedia.org/wiki/Document_Object_Model
https://www.w3.org/TR/DOM-Level-3-Events/
https://dom.spec.whatwg.org/
https://www.w3.org/TR/2015/REC-dom-20151119/


JavaScript	is	a	high	level,	dynamic,	untyped,	and	interpreted	programming	language.	It
has	been	standardized	in	the	ECMAScript	language	specification.	Alongside	HTML	and
CSS,	it	is	one	of	the	three	essential	technologies	of	World	Wide	Web	content
production;	the	majority	of	websites	employ	it	and	it	is	supported	by	all	modern	web
browsers	without	plug-ins.	JavaScript	is	prototype-based	with	first-class	functions,
making	it	a	multi-paradigm	language,	supporting	object-oriented,	imperative,	and
functional	programming	styles.	It	has	an	API	for	working	with	text,	arrays,	dates	and
regular	expressions,	but	does	not	include	any	I/O,	such	as	networking,	storage	or
graphics	facilities,	relying	for	these	upon	the	host	environment	in	which	it	is	embedded.

—	Wikipedia

Most	relevant	specifications	/	documentation:

ECMAScript®	2017	Language	Specification

Web	APIs	(aka	HTML5	and	friends)

When	writing	code	for	the	Web	using	JavaScript,	there	are	a	great	many	APIs	available.
Below	is	a	list	of	all	the	interfaces	(that	is,	types	of	objects)	that	you	may	be	able	to	use
while	developing	your	Web	app	or	site.

—	Mozilla

Most	relevant	documentation:

Web	API	Interfaces

JavaScript	Object	Notation	(aka	JSON)

c	It	is	the	primary	data	format	used	for	asynchronous	browser/server	communication
(AJAJ),	largely	replacing	XML	(used	by	AJAX).	Although	originally	derived	from	the
JavaScript	scripting	language,	JSON	is	a	language-independent	data	format.	Code	for
parsing	and	generating	JSON	data	is	readily	available	in	many	programming
languages.	The	JSON	format	was	originally	specified	by	Douglas	Crockford.	It	is
currently	described	by	two	competing	standards,	RFC	7159	and	ECMA-404.	The	ECMA
standard	is	minimal,	describing	only	the	allowed	grammar	syntax,	whereas	the	RFC
also	provides	some	semantic	and	security	considerations.	The	official	Internet	media
type	for	JSON	is	application/json.	The	JSON	filename	extension	is	.json.

—	Wikipedia

Most	relevant	specifications:

Introducing	JSON

Common	Web	Tech	Employed

24

https://en.wikipedia.org/wiki/JavaScript
https://tc39.github.io/ecma262/
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://en.wikipedia.org/wiki/JSON
http://json.org/


JSON	API
The	JSON	Data	Interchange	Format

Web	Content	Accessibility	Guidelines	(aka	WCAG)	&
Accessible	Rich	Internet	Applications	(aka	ARIA)

Accessibility	refers	to	the	design	of	products,	devices,	services,	or	environments	for
people	with	disabilities.	The	concept	of	accessible	design	ensures	both	“direct	access”
(i.e.,	unassisted)	and	"indirect	access"	meaning	compatibility	with	a	person's	assistive
technology	(for	example,	computer	screen	readers).

—	Wikipedia

Accessible	Rich	Internet	Applications	(WAI-ARIA)	Current	Status
Web	Accessibility	Initiative	(WAI)
Web	Content	Accessibility	Guidelines	(WCAG)	Current	Status

Common	Web	Tech	Employed

25

http://jsonapi.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://en.wikipedia.org/wiki/Accessibility
http://www.w3.org/standards/techs/aria#w3c_all
http://www.w3.org/WAI/
http://www.w3.org/standards/techs/wcag#w3c_all


Front-End	Dev	Skills

Image	source:	http://blog.naustud.io/2015/06/baseline-for-modern-front-end-developers.html

Basic	to	advanced	HTML,	CSS,	DOM,	JavaScript,	HTTP/URL,	and	browser	skills	are
assumed	for	any	type	of	front-end	developer.

Beyond	HTML,	CSS,	DOM,	JavaScript,	HTTP/URL,	and	browser	development	know-how,	a
front-end	developer	could	be	skilled	in	one	or	more	of	the	following:

Content	Management	Systems	(aka	CMS)
Node.js
Cross-Browser	Testing
Cross-Platform	Testing
Unit	Testing
Cross-Device	Testing
Accessibility	/	WAI-ARIA
Search	Engine	Optimization	(aka	SEO)
Interaction	or	User	Interface	Design
User	Experience
Usability
E-commerce	Systems
Portal	Systems
Wireframing
CSS	Layout	/	Grids
DOM	Manipulation	(e.g.,	jQuery)

Front-End	Dev	Skills

26

http://blog.naustud.io/2015/06/baseline-for-modern-front-end-developers.html


Mobile	Web	Performance
Load	Testing
Performance	Testing
Progressive	Enhancement	/	Graceful	Degradation
Version	Control	(e.g.,	GIT)
MVC	/	MVVM	/	MV*
Functional	Programming
Data	Formats	(e.g.,	JSON,	XML)
Data	APIs	(e.g	Restful	API)
Web	Font	Embedding
Scalable	Vector	Graphics	(aka	SVG)
Regular	Expressions
Content	Strategy
Microdata	/	Microformats
Task	Runners,	Build	Tools,	Process	Automation	Tools
Responsive	Web	Design
Object-Oriented	Programming
Application	Architecture
Modules
Dependency	Managers
Package	Managers
JavaScript	Animation
CSS	Animation
Charts	/	Graphs
UI	Widgets
Code	Quality	Testing
Code	Coverage	Testing
Code	Complexity	Analysis
Integration	Testing
Command	Line	/	CLI
Templating	Strategies
Templating	Engines
Single	Page	Applications
XHR	Requests	(aka	AJAX)
Web/Browser	Security
HTML	Semantics
Browser	Developer	Tools

Front-End	Dev	Skills

27



Front-End	Developers	Develop	For...
A	front-end	developer	crafts	HTML,	CSS,	and	JS	that	typically	runs	on	the	web	platform	(e.g.
a	web	browser)	delivered	from	one	of	the	following	operating	systems	(aka	OSs):

Android
Chromium
iOS
OS	X
Ubuntu	(or	some	flavor	of	Linux)
Windows	Phone
Windows

These	operating	systems	typically	run	on	one	or	more	of	the	following	devices:

Desktop	computer
Laptop	/	netbook	computer
Mobile	phone
Tablet
TV
Watch
Things	(i.e.,	anything	you	can	imagine,	car,	refrigerator,	lights,	thermostat,	etc.)

Front-End	Devs	Develop	For...

28

http://tess.oconnor.cx/2009/05/what-the-web-platform-is
https://en.wikipedia.org/wiki/Internet_of_things


Image	source:	https://www.enterpriseirregulars.com/104084/roundup-internet-things-
forecasts-market-estimates-2015/

Generally	speaking,	front-end	technologies	can	run	on	the	aforementioned	operating
systems	and	devices	using	the	following	run	time	web	platform	scenarios:

A	web	browser	(examples:	Chrome,	IE,	Safari,	Firefox).
A	headless	browser	(examples:	phantomJS).
A	WebView/browser	tab	(think	iframe)	embedded	within	a	native	application	as	a
runtime	with	bridge	to	native	APIs.	WebView	applications	typically	contain	a	UI
constructed	from	web	technologies.	(i.e.,	HTML,	CSS,	and	JS).	(examples:	Apache
Cordova,	NW.js,	Electron)
A	native	application	built	from	web	tech	that	is	interpreted	at	runtime	with	a	bridge	to
native	APIs.	The	UI	will	make	use	of	native	UI	parts	(e.g.,	iOS	native	controls)	not	web
technologies.	(examples:	NativeScript,	React	Native)

Front-End	Devs	Develop	For...

29

https://www.enterpriseirregulars.com/104084/roundup-internet-things-forecasts-market-estimates-2015/
http://outdatedbrowser.com/en
https://en.wikipedia.org/wiki/Headless_browser
http://phantomjs.org/
http://developer.telerik.com/featured/what-is-a-webview/
https://cordova.apache.org/
http://nwjs.io/
http://electron.atom.io/
https://www.nativescript.org/
https://facebook.github.io/react-native/


Front-End	on	a	Team
A	front-end	developer	is	typically	only	one	player	on	a	team	that	designs	and	develops	web
sites,	web	applications,	or	native	applications	running	from	web	technologies.

A	bare	bones	development	team	for	building	professional	web	sites	or	software	for	the	web
platform	will	typically,	minimally,	contain	the	following	roles.

Visual	Designer	(i.e.,	fonts,	colors,	spacing,	emotion,	visuals	concepts	&	themes)
UI/Interaction	Designer/Information	Architect	(i.e.,	wireframes,	specifying	all	user
interactions	and	UI	functionality,	structuring	information)
Front-End	Developer	(i.e.,	writes	code	that	runs	in	client/on	device)
Back-End	Developer	(i.e.,	writes	code	that	runs	on	server)

The	roles	are	ordered	according	to	overlapping	skills.	A	front-end	developer	will	typically
have	a	good	handle	on	UI/Interaction	design	as	well	as	back-end	development.	It	is	not
uncommon	for	team	members	to	fill	more	than	one	role	by	taking	on	the	responsibilities	of
an	over-lapping	role.

It	is	assumed	that	the	team	mentioned	above	is	being	directed	by	a	project	lead	or	some
kind	of	product	owner	(i.e.,	stakeholder,	project	manager,	project	lead,	etc.)

A	larger	web	team	might	include	the	following	roles	not	shown	above:

SEO	Strategists
DevOps	Engineers
Code	Quality	Engineers
Performance	Engineers
API	Developers
Database	Administrators
QA	Engineers	/	Testers

NOTES:

A	small	trend	seems	to	be	occurring	where	a,	"full-stack	developer"	takes	on	the
responsibilities	of	both	a	front-end	and	back-end	developer.

Front-End	on	a	Team

30



Generalist/Full-Stack	Myth

Image	source:	http://andyshora.com/full-stack-developers.html

The	roles	required	to	design	and	develop	a	web	solution	require	a	deep	skill	set	and	vast
experience	in	the	area	of	visual	design,	UI/interaction	design,	front-end	development,	and
back-end	development.	Any	person	who	can	fill	one	or	more	of	these	4	roles	at	a
professional	level	is	an	extremely	rare	commodity.

Pragmatically,	you	should	seek	to	be,	or	seek	to	hire,	an	expert	in	one	of	these	roles	(i.e.
Visual	Design,	Interaction	Design/IA,	Front-end	Dev,	Back-end	Dev).	Those	who	claim	to
operate	at	an	expert	level	at	one	or	more	of	these	roles	are	exceptionally	rare	and	more	than
likely	mythical.

However,	given	that	JavaScript	has	infiltrated	all	layers	of	a	technology	stack	(e.g.	React,
node.js,	express,	couchDB,	gulp.js	etc...)	finding	a	full-stack	JS	developer	who	can	code	the
front-end	and	back-end	is	becoming	less	mythical.	Typically,	these	full	stack	developers	only
deal	with	JavaScript.	A	developer	who	can	code	the	front-end,	back-end,	API,	and	database
isn't	as	absurd	as	it	once	was	(excluding	visual	design,	interaction	design,	and	CSS).	Still
mythical	in	my	opinion,	but	not	as	uncommon	as	it	once	was.	Thus,	I	wouldn't	recommend	a

Generalist/Full-Stack	Myth

31

http://andyshora.com/full-stack-developers.html
https://github.com/kamranahmedse/developer-roadmap#-front-end-roadmap
https://github.com/kamranahmedse/developer-roadmap#-back-end-roadmap


developer	set	out	to	become	a	"full	stack"	developer.	In	rare	situations	it	can	work.	But,	as	a
general	concept	for	building	a	career	as	a	Front-end	Developer,	I'd	focus	on	front-end
technologies.

NOTES:

The	term	"Full-Stack"	developer	has	come	to	take	on	several	meanings.	So	many,	that	not
one	meaning	is	clear	when	the	term	is	used.	Just	consider	the	results	from	the	two	surveys
shown	below.	These	results	would	lead	one	to	believe	that	the	majority	of	developers	are
full-stack	developers.	But,	in	my	almost	20	years	of	experience,	this	is	anything	but	the	case.

Image	source:	https://medium.freecodecamp.com/we-asked-15-000-people-who-they-are-
and-how-theyre-learning-to-code-4104e29b2781#.ngcpn8nlz

Generalist/Full-Stack	Myth

32

https://medium.freecodecamp.com/we-asked-15-000-people-who-they-are-and-how-theyre-learning-to-code-4104e29b2781#.ngcpn8nlz


Image	source:	https://insights.stackoverflow.com/survey/2017#developer-profile-specific-
developer-types

Generalist/Full-Stack	Myth

33

https://insights.stackoverflow.com/survey/2017#developer-profile-specific-developer-types


Front-End	Interviews
Questions	you	may	get	asked:

10	Interview	Questions	Every	JavaScript	Developer	Should	Know
Front-End	Job	Interview	Questions
Front	End	Web	Development	Quiz
Interview	Questions	for	Front-End-Developer
JavaScript	Web	Quiz
The	Best	Frontend	JavaScript	Interview	Questions	(written	by	a	Frontend	Engineer))
Front	End	Interview	Handbook

Questions	you	ask:

An	open	source	list	of	developer	questions	to	ask	prospective	employers

Preparing:

Preparing	for	a	Front-End	Web	Development	Interview	in	2017
Interview	Cake	[$]
Cracking	the	front-end	interview
Front	End	Interview	Handbook

Front-End	interview	questions

34

https://medium.com/javascript-scene/10-interview-questions-every-javascript-developer-should-know-6fa6bdf5ad95
http://h5bp.github.io/Front-end-Developer-Interview-Questions/
http://davidshariff.com/quiz/
http://thatjsdude.com/interview/index.html
http://davidshariff.com/js-quiz/
https://performancejs.com/post/hde6d32/The-Best-Frontend-JavaScript-Interview-Questions-(Written-by-a-Frontend-Engineer
https://github.com/yangshun/front-end-interview-handbook
https://github.com/ChiperSoft/InterviewThis
http://davidshariff.com/blog/preparing-for-a-front-end-web-development-interview-in-2017/
https://www.interviewcake.com/
https://medium.freecodecamp.com/cracking-the-front-end-interview-9a34cd46237
https://github.com/yangshun/front-end-interview-handbook


Front-End	Job	Boards
A	plethora	of	technical	job	listing	outlets	exist.	The	narrowed	list	below	are	currently	the	most
relevant	resources	for	finding	a	specific	front-end	position/career.

angularjobs.com
authenticjobs.com
careers.stackoverflow.com
css-tricks.com/jobs
codepen.io/jobs/
frontenddeveloperjob.com
glassdoor.com
jobs.emberjs.com
jobs.github.com
weworkremotely.com

NOTES:

Looking	for	a	remote	front-end	Job,	check	out	these	Remote-friendly	companies

Front-End	Job	Boards

35

http://angularjobs.com/
https://authenticjobs.com/#category=4
http://careers.stackoverflow.com/jobs?searchTerm=front-end
https://css-tricks.com/jobs/
http://codepen.io/jobs/
http://frontenddeveloperjob.com/
http://www.glassdoor.com/Job/front-end-developer-jobs-SRCH_KO0,19.htm?jobType=all
http://jobs.emberjs.com/
https://jobs.github.com/
https://weworkremotely.com/
https://github.com/jessicard/remote-jobs


Front-End	Salaries
The	national	average	in	the	U.S	for	a	mid-level	front-end	developer	is	somewhere	between
$75k	and	100k.

Image	source:	https://www.glassdoor.com/Salaries/front-end-developer-salary-
SRCH_KO0,19.htm

Front-End	Salaries

36

https://www.glassdoor.com/Salaries/front-end-developer-salary-SRCH_KO0,19.htm
https://medium.com/javascript-scene/top-javascript-libraries-tech-to-learn-in-2018-c38028e028e6
https://www.glassdoor.com/Salaries/front-end-developer-salary-SRCH_KO0,19.htm


Image	source:	https://www.indeed.com/salaries/Front-End-Developer-Salaries

Of	course	when	you	first	start	expect	to	enter	the	field	at	around	43k	depending	upon
location	and	portfolio.

NOTES:

A	lead/senior	front-end	developer/engineer	can	potentially	live	wherever	they	want	(i.e.,	work
remotely)	and	make	over	$150k	a	year	(visit	angel.co,	sign-up,	review	front-end	jobs	over
$150k	or	examine	the	salary	ranges	on	Stack	Overflow	Jobs).

Front-End	Salaries

37

https://www.indeed.com/salaries/Front-End-Developer-Salaries
https://angel.co/jobs
https://stackoverflow.com/jobs?q=front-end&sort=y


How	Front-End	Developers	Are	Made

Image	source:	https://github.com/kamranahmedse/developer-roadmap

How	exactly	does	one	become	a	front-end	developer?	Well,	it's	complicated.	Still	today	you
can't	go	to	college	and	expect	to	graduate	with	a	degree	in	front-end	engineering.	And,	I
rarely	hear	of	or	meet	front-end	developers	who	suffered	through	what	is	likely	a	deprecated

How	FDs	Are	Made

38

https://github.com/kamranahmedse/developer-roadmap


computer	science	degree	or	graphic	design	degree	to	end	up	writing	HTML,	CSS,	and
JavaScript	professionally.	From	my	perspective,	most	of	the	people	working	on	the	front-end
today	generally	seem	to	be	self	taught	from	the	ground	up	or	cross	over	into	the	front-end
from	design	or	traditional	computer	science	fields.

If	you	were	to	set	out	today	to	become	a	front-end	developer	I	would	loosely	strive	to	follow
the	process	outlined	below	(Part	two,	"Learning	Front-End	Dev",	dives	into	more	details	on
learning	resources).

1.	 Learn,	roughly,	how	the	web	works.	Make	sure	you	know	the	"what"	and	"where"	of
Domains,	DNS,	URLs,	HTTP,	networks,	browsers,	servers/hosting,	JSON,	data	APIs,
HTML,	CSS,	DOM,	and	JavaScript.	Don't	dive	deep	on	anything,	just	understand	the
parts	and	loosely	how	they	fit	together.	Focus	on	the	high	level	outlines	for	front-end
architectures.	Start	with	simple	web	pages	and	briefly	study	front-end	applications	(aka
SPAs)

2.	 Learn	HTML
3.	 Learn	CSS
4.	 Learn	JavaScript
5.	 Learn	DOM
6.	 Learn	JSON	and	data	APIs
7.	 Learn	the	fundamentals	of	user	interface	design	(i.e.	UI	patterns,	interaction	design,

user	experience	design,	and	usability).
8.	 Learn	CLI/command	line
9.	 Learn	the	practice	of	software	engineering	(i.e.,	Application	design/architecture,

templates,	Git,	testing,	monitoring,	automating,	code	quality,	development
methodologies).

10.	 Get	opinionated	and	customize	your	tool	box	with	whatever	makes	sense	to	your	brain
(e.g.	Webpack,	React,	and	Mobx).

11.	 Learn	Node.js

A	short	word	of	advice	on	learning.	Learn	the	actual	underlying	technologies,	before	learning
abstractions.	Don't	learn	jQuery,	learn	the	DOM.	Don't	learn	SASS,	learn	CSS.	Don't	learn
HAML,	learn	HTML.	Don't	learn	CoffeeScript,	learn	JavaScript.	Don't	learn	Handlebars,	learn
JavaScript	ES6	templates.	Don't	just	use	Bootstrap,	learn	UI	patterns.

Lately	a	lot	of	non-accredited,	expensive,	front-end	code	schools/bootcamps	have	emerged.
These	avenues	of	becoming	a	front-end	developer	are	typically	teacher	directed	courses,
that	follow	a	more	traditional	style	of	learning,	from	an	official	instructor	(i.e.,	syllabus,	test,
quizzes,	projects,	team	projects,	grades,	etc.).	Keep	in	mind,	if	you	are	considering	an
expensive	training	program,	this	is	the	web!	Everything	you	need	to	learn	is	on	the	web	for
the	taking,	costing	little	to	nothing.	However,	if	you	need	someone	to	tell	you	how	to	take	and
learn	what	is	actually	free,	and	hold	you	accountable	for	learning	it,	you	might	consider	an

How	FDs	Are	Made

39

https://frontendmasters.gitbooks.io/front-end-handbook-2017/content/learning/self-direct-learning.html
https://github.com/h5bp/html5-boilerplate/blob/master/dist/index.html
http://developer.telerik.com/featured/front-end-driven-applications-new-approach-applications/
https://youtu.be/QjKH1J77gjI?list=PL055Epbe6d5bQubu5EWf_kUNA3ef_qbmL
https://youtu.be/QjKH1J77gjI?list=PL055Epbe6d5bQubu5EWf_kUNA3ef_qbmL


organized	course.	Otherwise,	I	am	not	aware	of	any	other	profession	that	is	practically	free
for	the	taking	with	an	internet	connection,	a	hundred	dollars	a	month	for	screencasting
memberships,	and	a	burning	desire	for	knowledge.

For	example	if	you	want	to	get	going	today,	consuming	one	or	more	of	the	following	self-
directed	resources	below	can	work:

2016/2017	MUST-KNOW	WEB	DEVELOPMENT	TECH	[watch]
A	Beginner's	Guide	to	Front-End	Programming	[read	&	watch][free	to	$]
Become	a	Front-End	Web	Developer	[watch][$]
Front-End	Curriculum	[read]
freeCodeCamp	[interact]
So,	You	Want	to	be	a	Front-End	Engineer	[watch]
Front	End	Web	Development	Career	Kickstart	[watch][$]
Front	End	Web	Development:	Get	Started	[watch][$]
Front-End	Web	Development	Quick	Start	With	HTML5,	CSS,	and	JavaScript	[watch][$]
Introduction	to	Web	Development	[watch][$]
Foundations	of	Front-End	Web	Development	[watch][$]
Lean	Front-End	Engineering	[watch][$]
Learn	Front	End	Web	Development	[watch][$]
Front-End	Dev	Mastery	[watch][$]
Front-End	Web	Developer	Nanodegree	[watch][$]
Full	Stack	for	Front	End	Engineers	[$]

If	you	are	not	a	self	motivated	individual	and	need	a	more	structured	approach	you	should
consider	a	directed	learning	path.

When	getting	your	start,	you	should	fear	most	things	that	conceal	complexity.	Abstractions	in
the	wrong	hands	can	give	the	appearance	of	advanced	skills,	while	all	the	time	hiding	the
fact	that	a	developer	has	an	inferior	understanding	of	the	basics	or	underlying	concepts.

The	remaining	parts	of	this	book	will	point	the	reader	to	potential	resources	that	could	be
used	to	learn	front-end	development	and	the	tools	used	when	practicing	front-end
development.	It	is	assumed	that	on	this	journey	you	are	not	only	learning,	but	also	doing	as
you	learn	and	investigate	tools.	Some	suggest	only	doing	to	learn.	While	others	suggest	only
learning	about	doing.	I	suggest	you	find	a	mix	of	both	that	matches	how	your	brain	works
and	do	that.	But,	for	sure,	it	is	a	mix!	So,	don't	just	read	about	it,	do	it.	Learn,	do.	Learn,	do.
Repeat	indefinitely	because	things	change	fast.	This	is	why	learning	the	fundamentals,	and
not	abstractions,	are	so	important.

How	FDs	Are	Made

40

https://www.youtube.com/watch?v=sBzRwzY7G-k
https://www.springboard.com/learning-paths/beginners-guide-front-end-programming/learn/
https://www.lynda.com/learning-paths/Web/become-a-front-end-web-developer
https://gist.github.com/stevekinney/03027e71aac341af14a2
http://freecodecamp.com/
https://www.youtube.com/watch?v=Lsg84NtJbmI
http://www.pluralsight.com/courses/front-end-web-development-career-kickstart
http://www.pluralsight.com/courses/front-end-web-development-get-started
http://www.pluralsight.com/courses/front-end-web-app-html5-javascript-css
https://frontendmasters.com/courses/web-development/
https://www.udemy.com/foundations-of-front-end-development/
https://frontendmasters.com/courses/lean-front-end-engineering/
https://teamtreehouse.com/tracks/front-end-web-development
https://mijingo.com/products/bundles/front-end-dev-mastery/
https://www.udacity.com/course/front-end-web-developer-nanodegree--nd001
https://frontendmasters.com/courses/full-stack/


Part	II:	Learning
Part	two	identifies	self-directed	(i.e.,	at	your	own	pace	when	you	want)	and	directed	(i.e.,
formal	class	room	specific	times	and	dates)	resources	for	learning	to	become	a	front-end
developer.

Note	that	just	because	a	learning	resource	is	listed,	or	a	category	of	learning	is	documented,
I	am	not	suggesting	that	a	front-end	developer	learn	everything.	That	would	be	absurd.
Choose	your	own	slice	of	expertise	within	the	profession.	I'm	providing	the	possibilities	of
what	could	be	mastered	in	the	field.

Part	II:	Learning	Front-End	Dev

41



Self	Directed	Learning
This	section	focuses	on	free	and	paid	resources	(video	training,	books,	etc.)	that	an
individual	can	use	to	direct	their	own	learning	process	and	career	as	a	front-end	developer.

The	learning	resources	mentioned	(articles,	books,	videos,	screencasts	etc..)	will	include
both	free	and	paid	material.	Paid	material	will	be	indicated	with	[$].

The	author	believes	that	anyone	with	the	right	determination	and	dedication	can	teach
themselves	how	to	be	a	front-end	developer.	All	that	is	required	is	a	computer	connected	to
the	web	and	some	cash	for	books	and	online	video	training.

Below	are	a	few	video	learning	outlets	(tech	focused)	I	generally	recommend	pulling	content
from:

codecademy.com
codeschool.com
egghead.io
eventedmind.com
Frontend	Masters
Freecodecamp
Khan	Academy
laracasts.com
lynda.com	[careful,	quality	varies]
mijingo.com
pluralsight.com	[careful,	quality	varies]
Treehouse
tutsplus.com
Udacity	[careful,	quality	varies]

Self	Directed	Learning

42

https://codecademy.com
https://www.codeschool.com/
https://egghead.io/
https://www.eventedmind.com/
https://frontendmasters.com/
https://www.freecodecamp.com
https://www.khanacademy.org/computing/computer-programming
https://laracasts.com/
http://www.lynda.com/
https://mijingo.com/
http://www.pluralsight.com/
https://teamtreehouse.com/
https://tutsplus.com/courses
https://www.udacity.com/courses/web-development


Learn	Internet/Web
The	Internet	is	a	global	system	of	interconnected	computer	networks	that	use	the
Internet	protocol	suite	(TCP/IP)	to	link	several	billion	devices	worldwide.	It	is	a	network
of	networks	that	consists	of	millions	of	private,	public,	academic,	business,	and
government	networks	of	local	to	global	scope,	linked	by	a	broad	array	of	electronic,
wireless,	and	optical	networking	technologies.	The	Internet	carries	an	extensive	range
of	information	resources	and	services,	such	as	the	inter-linked	hypertext	documents
and	applications	of	the	World	Wide	Web	(WWW),	electronic	mail,	telephony,	and	peer-
to-peer	networks	for	file	sharing.

—	Wikipedia

Image	source:	https://www.helloitsliam.com/2014/12/20/how-the-internet-works-infographic/

What	is	the	Internet?	[watch]
How	the	Web	works	[read]
How	does	the	Internet	work?	https://developer.mozilla.org/en-
US/docs/Learn/Common_questions/How_does_the_Internet_work	and
http://web.stanford.edu/class/msande91si/www-
spr04/readings/week1/InternetWhitepaper.htm	[read]
How	the	Internet	Works	[watch]
How	the	Internet	Works	in	5	Minutes	[watch]
How	the	Web	Works	[watch]
What	Is	the	Internet?	Or,	"You	Say	Tomato,	I	Say	TCP/IP"	[read]
Don’t	Fear	the	Internet

Learn	Internet/Web

43

https://en.wikipedia.org/wiki/Internet
https://www.helloitsliam.com/2014/12/20/how-the-internet-works-infographic/
https://www.youtube.com/watch?v=Dxcc6ycZ73M
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/How_the_Web_works
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/How_does_the_Internet_work
http://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm
https://www.khanacademy.org/partner-content/code-org/internet-works
https://www.youtube.com/watch?v=7_LPdttKXPc
https://www.eventedmind.com/classes/how-the-web-works-7f40254c
http://www.20thingsilearned.com/en-US/what-is-the-internet/1
http://www.dontfeartheinternet.com/


Image	source:	http://www.bitrebels.com/technology/find-out-who-runs-the-internet-chart/

Learn	Internet/Web

44

http://www.bitrebels.com/technology/find-out-who-runs-the-internet-chart/


Learn	Web	Browsers
A	web	browser	(commonly	referred	to	as	a	browser)	is	a	software	application	for
retrieving,	presenting,	and	traversing	information	resources	on	the	World	Wide	Web.	An
information	resource	is	identified	by	a	Uniform	Resource	Identifier	(URI/URL)	and	may
be	a	web	page,	image,	video	or	other	piece	of	content.	Hyperlinks	present	in	resources
enable	users	easily	to	navigate	their	browsers	to	related	resources.	Although	browsers
are	primarily	intended	to	use	the	World	Wide	Web,	they	can	also	be	used	to	access
information	provided	by	web	servers	in	private	networks	or	files	in	file	systems.

—	Wikipedia

The	most	commonly	used	browsers	(on	any	device)	are:

1.	 Chrome	(engine:	Blink	+	V8)
2.	 Firefox	(engine:	Gecko	+	SpiderMonkey)
3.	 Internet	Explorer	(engine:	Trident	+	Chakra)
4.	 Safari	(engine:	Webkit	+	SquirrelFish)

Image	source:	http://gs.statcounter.com/browser-market-share

Evolution	of	Browsers	&	Web	Technologies	(i.e.,	APIs)

evolutionoftheweb.com	[read]
Timeline	of	web	browsers	[read]

Learn	Web	Browsers

45

https://en.wikipedia.org/wiki/Web_browser
https://www.sitepoint.com/browser-trends-september-2016-browser-wars/
http://www.google.com/chrome/
https://en.wikipedia.org/wiki/Blink_%28layout_engine%29
https://en.wikipedia.org/wiki/V8_%28JavaScript_engine%29
https://www.mozilla.org/en-US/firefox/new/
https://en.wikipedia.org/wiki/Gecko_%28software%29
https://en.wikipedia.org/wiki/SpiderMonkey_%28software%29
http://windows.microsoft.com/en-us/internet-explorer/download-ie
https://en.wikipedia.org/wiki/Trident_%28layout_engine%29
https://en.wikipedia.org/wiki/Chakra_%28JScript_engine%29
https://www.apple.com/safari/
https://en.wikipedia.org/wiki/WebKit
https://trac.webkit.org/wiki/SquirrelFish
http://gs.statcounter.com/browser-market-share
http://www.evolutionoftheweb.com/
https://en.wikipedia.org/wiki/Timeline_of_web_browsers


The	Most	Commonly	Used	Headless	Browser	Are:

Headless	Chromium	(engine:	Blink	+	V8)
PhantomJS	(engine:	Webkit	+	SquirrelFish)
SlimerJS	(engine:	Gecko	+	SpiderMonkey)
TrifleJS	(engine:	Trident	+	Chakra)

How	Browsers	Work

20	Things	I	Learned	About	Browsers	and	the	Web	[read]
Fast	CSS:	How	Browsers	Lay	Out	Web	Pages	[read]
How	Browsers	Work:	Behind	the	scenes	of	modern	web	browsers	[read]
Quantum	Up	Close:	What	is	a	browser	engine?
So	How	Does	the	Browser	Actually	Render	a	Website	[watch]
What	forces	layout	/	reflow	[read]
What	Every	Frontend	Developer	Should	Know	About	Webpage	Rendering	[read]

Image	source:	http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Optimizing	for	Browsers:

Browser	Rendering	Optimization	[watch]
Website	Performance	Optimization	[watch]

Comparing	Browsers

Comparison	of	Web	Browsers	[read]

Browser	Hacks

Learn	Web	Browsers

46

http://www.asad.pw/HeadlessBrowsers/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://www.chromium.org/blink
http://phantomjs.org/
https://en.wikipedia.org/wiki/WebKit
http://slimerjs.org/
https://en.wikipedia.org/wiki/Gecko_%28software%29
https://en.wikipedia.org/wiki/SpiderMonkey_%28software%29
https://github.com/sdesalas/trifleJS
https://en.wikipedia.org/wiki/Trident_%28layout_engine%29
https://en.wikipedia.org/wiki/Chakra_%28JScript_engine%29
http://www.20thingsilearned.com/en-US/foreword/1
http://dbaron.org/talks/2012-03-11-sxsw/master.xhtml
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://hacks.mozilla.org/2017/05/quantum-up-close-what-is-a-browser-engine/
https://www.youtube.com/watch?v=SmE4OwHztCc
https://gist.github.com/paulirish/5d52fb081b3570c81e3a
http://frontendbabel.info/articles/webpage-rendering-101/
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://www.udacity.com/course/browser-rendering-optimization--ud860
https://www.udacity.com/course/website-performance-optimization--ud884
https://en.wikipedia.org/wiki/Comparison_of_web_browsers


browserhacks.com	[read]

Developing	for	Browsers

In	the	past,	front-end	developers	spent	a	lot	of	time	making	code	work	in	several	different
browsers.	This	was	once	a	bigger	issue	than	it	is	today.	Today,	abstractions	(e.g.,	jQuery,
React,	Post-CSS,	Babel	etc...)	combined	with	modern	browsers	make	browser	development
fairly	easy.	The	new	challenge	is	not	which	browser	the	user	will	use,	but	on	which	device
they	will	run	the	browser.

Evergreen	Browsers

The	latest	versions	of	most	modern	browsers	are	considered	evergreen	browsers.	That	is,	in
theory	they	are	suppose	to	automatically	update	themselves	silently	without	prompting	the
user.	This	move	towards	self	updating	browsers	has	been	in	reaction	to	the	slow	process	of
eliminating	older	browsers	that	do	not	auto-update.

Picking	a	Browser	

As	of	today,	most	front-end	developers	use	Chrome	and	"Chrome	Dev	Tools"	to	develop
front-end	code.	However,	the	most	used	modern	browsers	all	offer	a	flavor	of	developer
tools.	Picking	one	to	use	for	development	is	a	subjective	choice.	The	more	important	issue	is
knowing	which	browsers,	on	which	devices,	you	have	to	support	and	then	testing
appropriately.

ADVICE:

	I	suggest	using	Chrome	because	the	developer	tools	are	consistently	improving	and	at	this
time	contain	the	most	robust	features.

1

1

Learn	Web	Browsers

47

http://browserhacks.com/


Learn	Domain	Name	System	(aka	DNS)
The	Domain	Name	System	(DNS)	is	a	hierarchical	distributed	naming	system	for
computers,	services,	or	any	resource	connected	to	the	Internet	or	a	private	network.	It
associates	various	information	with	domain	names	assigned	to	each	of	the	participating
entities.	Most	prominently,	it	translates	domain	names,	which	can	be	easily	memorized
by	humans,	to	the	numerical	IP	addresses	needed	for	the	purpose	of	computer	services
and	devices	worldwide.	The	Domain	Name	System	is	an	essential	component	of	the
functionality	of	most	Internet	services	because	it	is	the	Internet's	primary	directory
service.

—	Wikipedia

Image	source:	http://www.digital-digest.com/blog/DVDGuy/wp-
content/uploads/2011/11/how_dns_works.jpg

An	Introduction	to	DNS	Terminology,	Components,	and	Concepts	[read]
DNS	Explained	[watch]
How	DNS	Works	[read]

Learn	DNS

48

https://en.wikipedia.org/wiki/Domain_Name_System
http://www.digital-digest.com/blog/DVDGuy/wp-content/uploads/2011/11/how_dns_works.jpg
https://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts
https://www.youtube.com/watch?v=72snZctFFtA
https://howdns.works/ep1/


The	Internet:	IP	Addresses	and	DNS	[watch]
What	is	a	domain	name?	[read]

Learn	DNS

49

https://www.youtube.com/watch?v=5o8CwafCxnU&index=3&list=PLzdnOPI1iJNfMRZm5DDxco3UdsFegvuB7
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_domain_name


Learn	HTTP/Networks	(Including	CORS	&
WebSockets)

HTTP	-	The	Hypertext	Transfer	Protocol	(HTTP)	is	an	application	protocol	for
distributed,	collaborative,	hypermedia	information	systems.	HTTP	is	the	foundation	of
data	communication	for	the	World	Wide	Web.

—	Wikipedia

CORS	-	Cross-origin	resource	sharing	(CORS)	is	a	mechanism	that	allows	restricted
resources	(e.g.,	fonts)	on	a	web	page	to	be	requested	from	another	domain	outside	the
domain	from	which	the	resource	originated.

—	Wikipedia

WebSockets	-	WebSocket	is	a	protocol	providing	full-duplex	communication	channels
over	a	single	TCP	connection.	The	WebSocket	protocol	was	standardized	by	the	IETF
as	RFC	6455	in	2011,	and	the	WebSocket	API	in	Web	IDL	is	being	standardized	by	the
W3C.

—	Wikipedia

HTTP	Specifications

HTTP/2
Hypertext	Transfer	Protocol	--	HTTP/1.1

HTTP	Docs

MDN	HTTP	[read]

HTTP	Videos/Articles/Tutorials

High	Performance	Browser	Networking:	What	Every	Web	Developer	Should	Know
About	Networking	and	Web	Performance	[read]
MDN:	An	overview	of	HTTP	[read]
HTTP:	The	Definitive	Guide	(Definitive	Guides)	[read][$]
HTTP/2	Frequently	Asked	Questions	[read]
HTTP	Fundamentals	[watch][$]
HTTP/2	Fundamentals	[watch][$]
HTTP:	The	Protocol	Every	Web	Developer	Must	Know	-	Part	1	[read]
HTTP:	The	Protocol	Every	Web	Developer	Must	Know	-	Part	2	[read]

Learn	HTTP/Networks

50

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/WebSocket
https://http2.github.io/
https://tools.ietf.org/html/rfc2616
https://developer.mozilla.org/en-US/docs/Web/HTTP
http://chimera.labs.oreilly.com/books/1230000000545/index.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://www.amazon.com/HTTP-Definitive-Guide-Guides/dp/1565925092/ref=cm_cr_arp_d_product_top?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=11b990b79d33ddbef63712765715a9c1&camp=1789&creative=9325
https://http2.github.io/faq/#what-are-the-key-differences-to-http1x
http://www.pluralsight.com/courses/xhttp-fund
https://app.pluralsight.com/library/courses/http2-fundamentals/table-of-contents
http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155


HTTP	Succinctly	[read]

HTTP	Status	Codes

HTTP	Status	Codes
HTTP	Status	Codes	in	60	Seconds	[watch]

CORS	Specifications

Cross-Origin	Resource	Sharing

CORS

CORS	in	Action	[read][$]
HTTP	Access	Control	(CORS)	[read]

WebSockets

Connect	the	Web	With	WebSockets	[watch]
WebSocket:	Lightweight	Client-Server	Communications	[read][$]
The	WebSocket	Protocol	[read]

Learn	HTTP/Networks

51

http://code.tutsplus.com/series/http-succinctly--net-33683
https://httpstatuses.com/
http://webdesign.tutsplus.com/tutorials/http-status-codes-in-60-seconds--cms-24317
https://www.w3.org/TR/cors/
https://www.amazon.com/CORS-Action-Creating-consuming-cross-origin/dp/161729182X/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=47ebd885d688a4ed69f77a1bd8273f8a&camp=1789&creative=9325
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://code.tutsplus.com/courses/connect-the-web-with-websockets
https://www.amazon.com/WebSocket-Client-Server-Communications-Andrew-Lombardi/dp/1449369278/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=dd39395cf3d2ab4fc7c820d7c19db39a&camp=1789&creative=9325
https://tools.ietf.org/html/rfc6455


Learn	Web	Hosting
A	web	hosting	service	is	a	type	of	Internet	hosting	service	that	allows	individuals	and
organizations	to	make	their	website	accessible	via	the	World	Wide	Web.	Web	hosts	are
companies	that	provide	space	on	a	server	owned	or	leased	for	use	by	clients,	as	well
as	providing	Internet	connectivity,	typically	in	a	data	center.	Web	hosts	can	also	provide
data	center	space	and	connectivity	to	the	Internet	for	other	servers	located	in	their	data
center,	called	colocation,	also	known	as	Housing	in	Latin	America	or	France.

—	Wikipedia

Image	source:	http://www.alphaelite.com.sg/sitev2/images/stories/webhostdemo.jpg

General	Learning:

Web	Hosting	Services	Explained	[read]
Web	Hosting	101:	Get	Your	Website	Live	on	the	Web	in	No	Time	[video]

Learn	Web	Hosting

52

https://en.wikipedia.org/wiki/Web_hosting_service
http://www.alphaelite.com.sg/sitev2/images/stories/webhostdemo.jpg
https://firstsiteguide.com/web-hosting/
https://www.udemy.com/web-hosting-101/


Learn	Web	Hosting

53



Image	source:	https://firstsiteguide.com/wp-content/uploads/2016/06/what-is-web-hosting-
infographic.jpg

Learn	Web	Hosting

54

https://firstsiteguide.com/wp-content/uploads/2016/06/what-is-web-hosting-infographic.jpg


Learn	General	Front-End	Development
General	Learning:

Become	a	Front-End	Web	Developer	[watch][$]
Being	a	web	developer	[read]
Foundations	of	Front-End	Web	Development	[watch]
freeCodeCamp	[interact]
Front-End	Curriculum	[read]
Front-End	Dev	Mastery	[watch][$]
Front-End	Web	Developer	Nanodegree	[watch][$]
Front	End	Web	Development	Career	Kickstart	[watch][$]
Front	End	Web	Development:	Get	Started	[watch][$]
Front-End	Web	Development	Quick	Start	With	HTML5,	CSS,	and	JavaScript	[watch][$]
Front-End	Web	Development:	The	Big	Nerd	Ranch	Guide	[read][$]
Frontend	Guidelines	[read]
Introduction	to	Web	Development	[watch][$]
Isobar	Front-End	Code	Standards	[read]
Lean	Front-End	Engineering	[watch][$]
Learn	Front	End	Web	Development	[watch][$]
Planning	a	Front-End	JS	Application	[watch]
So,	You	Want	to	Be	a	Front-End	Engineer	[watch]

General	Front-End	Newsletters,	News	Outlets,	&	Podcasts:

The	Big	Web	Show
Front-End	Dev	Weekly
Front	End	Happy	Hour
frontendfront.com
FrontEnd	Focus
Front	End	Newsletter
Mobile	Web	Weekly
Open	Web	Platform	Daily	Digest
Pony	Foo	Weekly
shoptalkshow.com
The	Web	Ahead
The	Web	Platform	Podcast
webtoolsweekly.com

Learn	General	Front-End	Dev

55

https://www.lynda.com/learning-paths/Web/become-a-front-end-web-developer
http://www.yellowshoe.com.au/standards
https://www.udemy.com/foundations-of-front-end-development/
http://freecodecamp.com/
https://gist.github.com/stevekinney/03027e71aac341af14a2
https://mijingo.com/products/bundles/front-end-dev-mastery/
https://www.udacity.com/course/front-end-web-developer-nanodegree--nd001
http://www.pluralsight.com/courses/front-end-web-development-career-kickstart
http://www.pluralsight.com/courses/front-end-web-development-get-started
http://www.pluralsight.com/courses/front-end-web-app-html5-javascript-css
https://www.amazon.com/Front-End-Web-Development-Ranch-Guide/dp/0134433947/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=06802d4e42ca55b03294779c960d0826&camp=1789&creative=9325
https://github.com/bendc/frontend-guidelines
https://frontendmasters.com/courses/web-development/
http://isobar-idev.github.io/code-standards/
https://frontendmasters.com/courses/lean-front-end-engineering/
https://teamtreehouse.com/tracks/front-end-web-development
https://www.youtube.com/watch?v=q4zEGkjTBFA
https://www.youtube.com/watch?v=Lsg84NtJbmI
http://5by5.tv/bigwebshow
http://frontenddevweekly.com/
http://frontendhappyhour.com/
http://frontendfront.com/
http://frontendfocus.co/
http://frontendnewsletter.com/
http://mobilewebweekly.co/
http://webplatformdaily.org/
https://ponyfoo.com/weekly
http://shoptalkshow.com/
http://thewebahead.net/
http://thewebplatform.libsyn.com/
http://webtoolsweekly.com/


Learn	General	Front-End	Dev

56



Learn	User	Interface/Interaction	Design
User	Interface	Design	-	User	interface	design	(UI)	or	user	interface	engineering	is	the
design	of	user	interfaces	for	machines	and	software,	such	as	computers,	home
appliances,	mobile	devices,	and	other	electronic	devices,	with	the	focus	on	maximizing
the	user	experience.	The	goal	of	user	interface	design	is	to	make	the	user's	interaction
as	simple	and	efficient	as	possible,	in	terms	of	accomplishing	user	goals	(user-centered
design).

—	Wikipedia

Interaction	Design	Pattern	-	A	design	pattern	is	a	formal	way	of	documenting	a
solution	to	a	common	design	problem.	The	idea	was	introduced	by	the	architect
Christopher	Alexander	for	use	in	urban	planning	and	building	architecture,	and	has
been	adapted	for	various	other	disciplines,	including	teaching	and	pedagogy,
development	organization	and	process,	and	software	architecture	and	design.

—	Wikipedia

User	Experience	Design	-	User	Experience	Design	(UXD	or	UED	or	XD)	is	the
process	of	enhancing	user	satisfaction	by	improving	the	usability,	accessibility,	and
pleasure	provided	in	the	interaction	between	the	user	and	the	product.	User	experience
design	encompasses	traditional	human–computer	interaction	(HCI)	design,	and
extends	it	by	addressing	all	aspects	of	a	product	or	service	as	perceived	by	users.

—	Wikipedia

Human–Computer	Interaction	-	Human–computer	interaction	(HCI)	researches	the
design	and	use	of	computer	technology,	focusing	particularly	on	the	interfaces	between
people	(users)	and	computers.	Researchers	in	the	field	of	HCI	both	observe	the	ways	in
which	humans	interact	with	computers	and	design	technologies	that	lets	humans
interact	with	computers	in	novel	ways.

—	Wikipedia

Minimally	I'd	suggest	reading	the	following	canonical	texts	on	the	matter	so	one	can	support
and	potential	build	usable	user	interfaces.

About	Face:	The	Essentials	of	Interaction	Design	[read][$]
Design	for	Hackers:	Reverse	Engineering	Beauty	[read][$]
Design	for	Non-Designers	[watch]
Designing	Interfaces	[read][$]

Learn	UI/Interaction	Design

57

https://en.wikipedia.org/wiki/User_interface_design
https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/User_experience_design
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://www.amazon.com/About-Face-Essentials-Interaction-Design-ebook/dp/B00MFPZ9UY/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=c723c84ad4d246cb7f1c4a737c5f38a4&camp=1789&creative=9325
https://www.amazon.com/Design-Hackers-Reverse-Engineering-Beauty/dp/1119998956/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=2a52f0968de21c03f069d857b9d92b37&camp=1789&creative=9325
https://www.youtube.com/watch?v=ZbrzdMaumNk&feature=youtu.be
https://www.amazon.com/Designing-Interfaces-Jenifer-Tidwell/dp/1449379702/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=4539707bb145c676472472aab25eaa56&camp=1789&creative=9325


Designing	Web	Interfaces:	Principles	and	Patterns	for	Rich	Interactions	[read][$]
Don't	Make	Me	Think,	Revisited:	A	Common	Sense	Approach	to	Web	Usability	[read][$]

Learn	UI/Interaction	Design

58

https://www.amazon.com/Designing-Web-Interfaces-Principles-Interactions-ebook/dp/B0026OR33U/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=03fb59f4a4345732fae9ecdfaa5076ae&camp=1789&creative=9325
https://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=8b0b0771a9985e4e030ef1fe29cf6409&camp=1789&creative=9325


Learn	HTML	&	CSS
HTML	-	HyperText	Markup	Language,	commonly	referred	to	as	HTML,	is	the	standard
markup	language	used	to	create	web	pages.	Web	browsers	can	read	HTML	files	and
render	them	into	visible	or	audible	web	pages.	HTML	describes	the	structure	of	a
website	semantically	along	with	cues	for	presentation,	making	it	a	markup	language,
rather	than	a	programming	language.

—	Wikipedia

CSS	-	Cascading	Style	Sheets	(CSS)	is	a	style	sheet	language	used	for	describing	the
look	and	formatting	of	a	document	written	in	a	markup	language.	Although	most	often
used	to	change	the	style	of	web	pages	and	user	interfaces	written	in	HTML	and
XHTML,	the	language	can	be	applied	to	any	kind	of	XML	document,	including	plain
XML,	SVG	and	XUL.	Along	with	HTML	and	JavaScript,	CSS	is	a	cornerstone
technology	used	by	most	websites	to	create	visually	engaging	webpages,	user
interfaces	for	web	applications,	and	user	interfaces	for	many	mobile	applications.

—	Wikipedia

Liken	to	constructing	a	house,	one	might	consider	HTML	the	framing	and	CSS	to	be	the
painting	&	decorating.

General	Learning:

Absolute	Centering	in	CSS	[read]
codecademy.com	HTML	&	CSS	[interact]
CSS	Positioning	[watch][$]
Front	End	Web	Development:	Get	Started	[watch][$]
Front-End	Web	Development	Quick	Start	With	HTML5,	CSS,	and	JavaScript	[watch][$]
HTML	and	CSS:	Design	and	Build	Websites	[read][$]
HTML	Document	Flow	[watch][$]
HTML	Mastery:	Semantics,	Standards,	and	Styling	[read][$]
Interneting	is	Hard	[read]
Intro	to	HTML/CSS:	Making	webpages	[watch]
Learn	to	Code	HTML	&	CSS	[read]
Learn	CSS	Layout	[read]
MarkSheet	[read]
MDN:	HTML	[read]
MDN:	CSS	[read]
Semantic	HTML:	How	to	Structure	Web	Pages	[watch]

Learn	HTML	&	CSS

59

https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://codepen.io/shshaw/full/gEiDt
https://www.codecademy.com/tracks/web
http://www.pluralsight.com/courses/css-positioning-1834
http://www.pluralsight.com/courses/front-end-web-development-get-started
http://www.pluralsight.com/courses/front-end-web-app-html5-javascript-css
https://www.amazon.com/gp/product/1118008189/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=b1c45ab715f267f7dfed8c981c14eceb&camp=1789&creative=9325
http://www.pluralsight.com/courses/html-document-flow-1837
https://www.amazon.com/gp/product/1590597656/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=a5c4eb997239ea9e57a86456cef7763c&camp=1789&creative=9325
https://internetingishard.com/
https://www.khanacademy.org/computing/computer-programming/html-css
http://learn.shayhowe.com/html-css/
http://learnlayout.com/
http://marksheet.io/
https://developer.mozilla.org/en-US/docs/Learn/HTML
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://webdesign.tutsplus.com/courses/semantic-html-how-to-structure-web-pages


Solid	HTML	Form	Structure	[watch]
Understanding	the	CSS	Box	Model	[watch]
Resilient	Web	Design	[read]

Mastering	CSS:

A	Complete	Guide	to	Flexbox	[read]
CSS	Diner	[interact]
CSS	Selectors	from	CSS4	till	CSS1	[read]
CSS	Secrets:	Better	Solutions	to	Everyday	Web	Design	Problems	[read][$]
CSS3	[read]
CSS3	In-Depth	[watch][$]
What	the	Flexbox?!	A	Simple,	Free	20	Video	Course	That	Will	Help	You	Master	CSS
Flexbox	[watch]

References/Docs:

CSS	Triggers...a	Game	of	Layout,	Paint,	and	Composite
cssreference.io
cssvalues.com
Default	CSS	for	Chrome	Browser
Head	-	A	list	of	everything	that	could	go	in	the	of	your	document
HTML	Attribute	Reference
MDN	CSS	Reference
MDN	HTML	Element	Reference

Glossary/Vocabulary:

CSS	Glossary	-	Programming	Reference	for	CSS	Covering	Comments,	Properties,	and
Selectors
CSS	Vocabulary
HTML	Glossary	Programming	Reference	for	HTML	elements

Standards/Specifications:

All	W3C	CSS	Specifications
All	W3C	HTML	Spec
Cascading	Style	Sheets	Level	2	Revision	2	(CSS	2.2)	Specification
CSS	Indexes	-	A	listing	of	every	term	defined	by	CSS	specs
The	Elements	of	HTML	from	the	Living	Standard
Global	Attributes
The	HTML	Syntax	from	the	Living	Standard
HTML	5.2	from	W3C

Learn	HTML	&	CSS

60

https://webdesign.tutsplus.com/courses/solid-html-form-structure
https://webdesign.tutsplus.com/courses/understanding-the-css-box-model
https://resilientwebdesign.com/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://flukeout.github.io/
http://css4-selectors.com/selectors/
https://www.amazon.com/CSS-Secrets-Solutions-Everyday-Problems/dp/1449372635/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=40a9480c18839b4b2ea798aa2afafd0e&camp=1789&creative=9325
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS3
https://frontendmasters.com/courses/css3-in-depth/
http://flexbox.io/
http://csstriggers.com/
http://cssreference.io/
http://cssvalues.com/
https://chromium.googlesource.com/chromium/blink/+/master/Source/core/css/html.css
http://gethead.info/
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://www.codecademy.com/articles/glossary-css
http://apps.workflower.fi/vocabs/css/en
https://www.codecademy.com/articles/glossary-html
http://www.w3.org/Style/CSS/current-work#roadmap
http://www.w3.org/standards/techs/html#w3c_all
https://drafts.csswg.org/css2/
https://drafts.csswg.org/indexes/
https://html.spec.whatwg.org/multipage/semantics.html#semantics
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes
https://html.spec.whatwg.org/multipage/syntax.html#syntax
http://w3c.github.io/html/


Selectors	Level	3

Architecting	CSS:

Atomic	Design	[read]
BEM
ITCSS
OOCSS	[read]
SMACSS	[read][$]

Scalable	Modular	Architecture	for	CSS	(SMACSS)	[watch][$]
SUIT	CSS
rscss

Authoring/Architecting	Conventions:

CSS	code	guide	[read]
css-architecture
cssguidelin.es	[read]
Idiomatic	CSS	[read]
MaintainableCSS	[read]
Standards	for	Developing	Flexible,	Durable,	and	Sustainable	HTML	and	CSS	[read]

HTML/CSS	Newsletters:

CSS	Weekly
Frontend	Focus

NOTES:

Writing	CSS	in	JS	was	hot	this	year.	Make	sure	you	are	aware	of	the	use	case.	And	why
some	think	it	is	overused.

Learn	HTML	&	CSS

61

http://www.w3.org/TR/css3-selectors/
http://atomicdesign.bradfrost.com/
http://getbem.com/introduction/
https://www.xfive.co/blog/itcss-scalable-maintainable-css-architecture/
http://oocss.org/
https://smacss.com/
https://frontendmasters.com/courses/smacss/
http://suitcss.github.io
http://rscss.io/
http://codeguide.co/#css
https://github.com/jareware/css-architecture
http://cssguidelin.es/
https://github.com/necolas/idiomatic-css
http://maintainablecss.com/
http://mdo.github.io/code-guide/
http://css-weekly.com/archives/
http://frontendfocus.co/
https://hackernoon.com/all-you-need-to-know-about-css-in-js-984a72d48ebc
https://medium.com/@gajus/stop-using-css-in-javascript-for-web-development-fa32fb873dcc


Learn	Search	Engine	Optimization
Search	engine	optimization	(SEO)	is	the	process	of	affecting	the	visibility	of	a	website
or	a	web	page	in	a	search	engine's	unpaid	results	—	often	referred	to	as	"natural,"
"organic,"	or	"earned"	results.	In	general,	the	earlier	(or	higher	ranked	on	the	search
results	page),	and	more	frequently	a	site	appears	in	the	search	results	list,	the	more
visitors	it	will	receive	from	the	search	engine's	users.	SEO	may	target	different	kinds	of
search,	including	image	search,	local	search,	video	search,	academic	search,	news
search	and	industry-specific	vertical	search	engines.

—	Wikipedia

how-does-seo-work.png

Image	source:	https://visual.ly/community/infographic/computers/how-does-seo-work

General	Learning:

Google	Search	Engine	Optimization	Starter	Guide	[read]

Learn	SEO

62

https://en.wikipedia.org/wiki/Search_engine_optimization
https://visual.ly/community/infographic/computers/how-does-seo-work
http://static.googleusercontent.com/media/www.google.com/en//webmasters/docs/search-engine-optimization-starter-guide.pdf


Modern	SEO	[watch][$]
SEO	Fundamentals	From	David	Booth	[watch][$]
SEO	Fundamentals	From	Paul	Wilson	[watch][$]
SEO	Tutorial	For	Beginners	in	2016	[read]
SEO	for	Web	Designers	[watch][$]

Learn	SEO

63

https://frontendmasters.com/workshops/modern-seo/
http://www.lynda.com/Analytics-tutorials/SEO-Fundamentals/187858-2.html
http://www.pluralsight.com/courses/seo-fundamentals
http://www.hobo-web.co.uk/seo-tutorial/
https://webdesign.tutsplus.com/courses/seo-for-web-designers


Learn	JavaScript
JavaScript	is	a	high	level,	dynamic,	untyped,	and	interpreted	programming	language.	It
has	been	standardized	in	the	ECMAScript	language	specification.	Alongside	HTML	and
CSS,	it	is	one	of	the	three	essential	technologies	of	World	Wide	Web	content
production;	the	majority	of	websites	employ	it	and	it	is	supported	by	all	modern	web
browsers	without	plug-ins.	JavaScript	is	prototype-based	with	first-class	functions,
making	it	a	multi-paradigm	language,	supporting	object-oriented,	imperative,	and
functional	programming	styles.	It	has	an	API	for	working	with	text,	arrays,	dates	and
regular	expressions,	but	does	not	include	any	I/O,	such	as	networking,	storage	or
graphics	facilities,	relying	for	these	upon	the	host	environment	in	which	it	is	embedded.

—	Wikipedia

Getting	Started:

Ten	Things	A	Serious	JavaScript	Developer	Should	Learn
codecademy.com	JavaScript	[interact]
MDN:	JavaScript	[read]
javascript.info
JavaScript	Enlightenment	[read]
Eloquent	JavaScript	[read]

General	Learning:

Speaking	JavaScript	[read]
You	Don't	Know	JS:	Up	&	Going	[read]
You	Don't	Know	JS:	Types	&	Grammar	[read]
You	Don't	Know	JS:	Scope	&	Closures	[read]
Gentle	explanation	of	'this'	keyword	in	JavaScript	[read]
You	Don't	Know	JS:	this	&	Object	Prototypes	[read]
Modern	JavaScript	Cheatsheet	-	Cheatsheet	for	the	JavaScript	knowledge	you	will
frequently	encounter	in	modern	projects.	[read]

Mastering:

Setting	up	ES6	[read]
ES6	FOR	EVERYONE!	[watch][$]
Exploring	ES6	[read]
You	Don't	Know	JS:	ES6	&	Beyond	[read]
Understanding	ECMAScript	6:	The	Definitive	Guide	for	JavaScript	Developers	[read][$]

Learn	JavaScript

64

https://en.wikipedia.org/wiki/JavaScript
https://benmccormick.org/2017/07/19/ten-things-javascript/
https://www.codecademy.com/en/tracks/javascript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
http://javascript.info/
http://www.javascriptenlightenment.com/
http://eloquentjavascript.net/
http://speakingjs.com/es5/index.html
https://github.com/getify/You-Dont-Know-JS/blob/master/up%20&%20going/README.md#you-dont-know-js-up--going
https://github.com/getify/You-Dont-Know-JS/blob/master/types%20&%20grammar/README.md#you-dont-know-js-types--grammar
https://github.com/getify/You-Dont-Know-JS/blob/master/scope%20&%20closures/README.md#you-dont-know-js-scope--closures
http://rainsoft.io/gentle-explanation-of-this-in-javascript/
https://github.com/getify/You-Dont-Know-JS/blob/master/this%20&%20object%20prototypes/README.md#you-dont-know-js-this--object-prototypes
https://github.com/mbeaudru/modern-js-cheatsheet
https://leanpub.com/setting-up-es6
https://es6.io/
http://exploringjs.com/es6.html
https://github.com/getify/You-Dont-Know-JS/blob/master/es6%20&%20beyond/README.md#you-dont-know-js-es6--beyond
https://www.amazon.com/Understanding-ECMAScript-Definitive-JavaScript-Developers/dp/1593277571/ref=as_li_ss_tl?&_encoding=UTF8&tag=fronenddevejo-20&linkCode=ur2&linkId=1ca4f5f23b42aeadad0990ab3bf91ca7&camp=1789&creative=9325


ES6:	The	Right	Parts	[watch][$]
Exploring	ES2016	and	ES2017	[read]
JavaScript	Regular	Expression	Enlightenment	[read]
Using	Regular	Expressions	[watch][$]
You	Don't	Know	JS:	Async	&	Performance	[read]
JavaScript	with	Promises	[read][$]
Test-Driven	JavaScript	Development	[read][$]
JS	MythBusters	[read]
Robust	JavaScript

Functional	JavaScript:

Functional	Programming	Jargon
funfunfunction:	Functional	programming	in	JavaScript	[watch]
Functional-Light-JS	[read]
Functional	Programming	in	JavaScript:	How	to	improve	your	JavaScript	programs	using
functional	techniques	[read]
Mostly	adequate	guide	to	FP	(in	javascript)	[read]
Professor	Frisby	Introduces	Composable	Functional	JavaScript	[watch]
JavaScript	Allongé	[read][$]
Hardcore	Functional	Programming	in	JavaScript	[watch][$]
Functional-Lite	JavaScript	[watch][$]

References/Docs:

MDN	JavaScript	Reference
MSDN	JavaScrip	Reference

Glossary/Encyclopedia/Jargon:

The	JavaScript	Encyclopedia
JavaScript	Glossary
Simplified	JavaScript	Jargon

Standards/Specifications:

How	to	Read	the	ECMAScript	Specification
ECMAScript®	2015	Language	Specification
ECMAScript®	2016	Language	Specification
ECMAScript®	2017	Language	Specification
ECMAScript®	2018	Language	Specification
Status,	Process,	and	Documents	for	ECMA262

Learn	JavaScript

65

https://frontendmasters.com/courses/es6-right-parts/
http://exploringjs.com/es2016-es2017.html
http://codylindley.com/techpro/2013_05_14__javascript-regular-expression-/
http://www.lynda.com/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
https://github.com/getify/You-Dont-Know-JS/blob/master/async%20&%20performance/README.md#you-dont-know-js-async--performance
http://www.amazon.com/JavaScript-Promises-Daniel-Parker/dp/1449373216/ref=pd_sim_sbs_14_5
http://www.amazon.com/dp/0321683919/
https://mythbusters.js.org/index.html
https://molily.de/robust-javascript/
https://github.com/hemanth/functional-programming-jargon#functional-programming-jargon
https://www.youtube.com/watch?v=BMUiFMZr7vk&list=PL0zVEGEvSaeEd9hlmCXrk5yUyqUag-n84
https://github.com/getify/Functional-Light-JS
https://www.amazon.com/Functional-Programming-JavaScript-functional-techniques/dp/1617292826/ref=sr_1_1?&_encoding=UTF8&tag=fronenddevejo-20&linkCode=ur2&linkId=dcc6b0cb7de57fa841f1b178d2d54b9d&camp=1789&creative=9325
https://drboolean.gitbooks.io/mostly-adequate-guide/content/
https://egghead.io/courses/professor-frisby-introduces-composable-functional-javascript
https://leanpub.com/javascriptallongesix
https://frontendmasters.com/courses/functional-javascript/
https://frontendmasters.com/courses/functional-js-lite/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://msdn.microsoft.com/en-us/library/yek4tbz0.aspx
http://www.crockford.com/javascript/encyclopedia/
https://www.codecademy.com/articles/glossary-javascript
http://jargon.js.org/
https://timothygu.me/es-howto/
http://www.ecma-international.org/ecma-262/6.0/index.html
https://www.ecma-international.org/ecma-262/7.0/index.html
http://www.ecma-international.org/ecma-262/8.0/index.html
https://tc39.github.io/ecma262/
https://github.com/tc39/ecma262


Style:

Airbnb	JavaScript	Style	Guide
JavaScript	Standard	Style
JavaScript	Semi-Standard	Style

JavaScript	Newsletters,	News,	&	Podcasts:

Echo	JS
ECMAScript	Daily
ES.next	News
JavaScript	Air
JavaScript	Jabber
JavaScript	Kicks
JavaScript	Live
JavaScript	Weekly
JavaScript.com

Deprecated	JS	Learning	Resources:

Crockford	on	JavaScript	-	Volume	1:	The	Early	Years	[watch]
Crockford	on	JavaScript	-	Chapter	2:	And	Then	There	Was	JavaScript	[watch]
Crockford	on	JavaScript	-	Act	III:	Function	the	Ultimate	[watch]
Crockford	on	JavaScript	-	Episode	IV:	The	Metamorphosis	of	Ajax	[watch]
Crockford	on	JavaScript	-	Part	5:	The	End	of	All	Things	[watch]
Crockford	on	JavaScript	-	Scene	6:	Loopage	[watch]
JavaScript	Patterns	[read][$]
The	Principles	of	Object-Oriented	JavaScript	[read][$]
JavaScript	Modules	[read]
Functional	JavaScript:	Introducing	Functional	Programming	with	Underscore.js	[read][$]
The	Good	Parts	of	JavaScript	and	the	Web	[watch][$]
High	Performance	JavaScript	(Build	Faster	Web	Application	Interfaces)	[read][$]
Advanced	JavaScript	[watch][$]

JS	Explorers:

JavaScript	Array	Explorer
JavaScript	Object	Explorer

Learn	JavaScript

66

http://airbnb.io/javascript/
http://standardjs.com/rules.html
https://github.com/Flet/semistandard
http://www.echojs.com/
https://ecmascript-daily.github.io/
http://esnextnews.com/
https://javascriptair.com/
https://devchat.tv/js-jabber/
http://javascriptkicks.com/
https://jslive.com/
http://javascriptweekly.com/
https://www.javascript.com/news
https://www.youtube.com/watch?v=JxAXlJEmNMg
https://www.youtube.com/watch?v=RO1Wnu-xKoY
https://www.youtube.com/watch?v=ya4UHuXNygM
https://www.youtube.com/watch?v=Fv9qT9joc0M
https://www.youtube.com/watch?v=47Ceot8yqeI
https://www.youtube.com/watch?v=QgwSUtYSUqA
http://www.amazon.com/gp/product/0596806752/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0596806752&linkCode=as2&tag=fronenddevejo-20&linkId=K56OPQZNQNMPF6QI
http://www.amazon.com/gp/product/1593275404/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1593275404&linkCode=as2&tag=fronenddevejo-20&linkId=NQTZVDOIMJRGMAQM
http://jsmodules.io/cjs.html
http://www.amazon.com/gp/product/1449360726/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1449360726&linkCode=as2&tag=fronenddevejo-20&linkId=BDQC3FTEB3YXTYCK
https://frontendmasters.com/courses/good-parts-javascript-web/
http://www.amazon.com/Performance-JavaScript-Faster-Application-Interfaces/dp/059680279X/ref=sr_1_1
https://frontendmasters.com/courses/advanced-javascript/
https://sdras.github.io/array-explorer/
https://sdras.github.io/object-explorer/


Learn	Web	Animation
General	Learning:

Advanced	SVG	Animation	[$][watch]
Adventures	in	Web	Animations	[$][watch]
Animating	With	Snap.svg	[$][watch]
Animation	in	CSS3	and	HTML5	[$][watch]
Create	Animations	in	CSS	[read	&	watch]
CSS	Animation	in	the	Real	World	[$][watch]
Foundation	HTML5	Animation	with	JavaScript	[$][read]
Learn	to	Create	Animations	in	JavaScript	[read	&	watch]
Motion	Design	with	CSS	[$][watch]
State	of	the	Animation	2015	[watch]
Web	Animation	using	JavaScript:	Develop	&	Design	(Develop	and	Design)	[$][read]

Standards/Specifications:

Web	Animations

Learn	Web	Animation

67

https://frontendmasters.com/courses/svg-animation/
https://www.codeschool.com/courses/adventures-in-web-animations
https://webdesign.tutsplus.com/courses/animating-with-snapsvg
https://frontendmasters.com/courses/animation-storytelling-html5-css3/
http://www.kirupa.com/css_animations/index.htm
https://webdesign.tutsplus.com/courses/css-animation-in-the-real-world
http://www.amazon.com/Foundation-HTML5-Animation-JavaScript-Lamberta/dp/1430236655/ref=sr_1_3
http://www.kirupa.com/javascript_animations/index.htm
https://frontendmasters.com/courses/motion-design-css/
https://air.mozilla.org/rachel-nabors-state-of-the-animation-2015/
http://www.amazon.com/Web-Animation-using-JavaScript-Develop-ebook/dp/B00UNKXVDU/ref=sr_1_1
https://w3c.github.io/web-animations/


Learn	DOM,	BOM,	&	jQuery
DOM	-	The	Document	Object	Model	(DOM)	is	a	cross-platform	and	language-
independent	convention	for	representing	and	interacting	with	objects	in	HTML,	XHTML,
and	XML	documents.	The	nodes	of	every	document	are	organized	in	a	tree	structure,
called	the	DOM	tree.	Objects	in	the	DOM	tree	may	be	addressed	and	manipulated	by
using	methods	on	the	objects.	The	public	interface	of	a	DOM	is	specified	in	its
application	programming	interface	(API).

—	Wikipedia

BOM	-	The	Browser	Object	Model	(BOM)	is	a	browser-specific	convention	referring	to
all	the	objects	exposed	by	the	web	browser.	Unlike	the	Document	Object	Model,	there
is	no	standard	for	implementation	and	no	strict	definition,	so	browser	vendors	are	free
to	implement	the	BOM	in	any	way	they	wish.

—	Wikipedia

jQuery	-	jQuery	is	a	cross-platform	JavaScript	library	designed	to	simplify	the	client-
side	scripting	of	HTML.	jQuery	is	the	most	popular	JavaScript	library	in	use	today,	with
installation	on	65%	of	the	top	10	million	highest-trafficked	sites	on	the	Web.	jQuery	is
free,	open-source	software	licensed	under	the	MIT	License.

—	Wikipedia

The	ideal	path,	but	certainly	the	most	difficult,	would	be	to	first	learn	JavaScript,	then	the
DOM,	then	jQuery.	However,	do	what	makes	sense	to	your	brain.	Most	front-end	developers
learn	about	JavaScript	and	then	DOM	by	way	of	first	learning	jQuery.	Whatever	path	you
take,	just	make	sure	JavaScript,	the	DOM,	and	jQuery	don't	become	a	black	box.

General	Learning:

Codecademy.com	jQuery	[watch]
The	Document	Object	Model	[read]
HTML/JS:	Making	Webpages	Interactive	[watch]
HTML/JS:	Making	Webpages	Interactive	with	jQuery	[watch]
jQuery	Enlightenment	[read]
What	is	the	DOM?	[read]

Mastering:

AdvancED	DOM	Scripting:	Dynamic	Web	Design	Techniques	[read][$]

Learn	DOM,	BOM	&	jQuery

68

https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Browser_Object_Model
https://en.wikipedia.org/wiki/JQuery
https://www.codecademy.com/tracks/jquery
http://eloquentjavascript.net/13_dom.html
https://www.khanacademy.org/computing/computer-programming/html-css-js
https://www.khanacademy.org/computing/computer-programming/html-js-jquery
http://jqueryenlightenment.com/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
http://www.amazon.com/gp/product/1590598563/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1590598563&linkCode=as2&tag=fronenddevejo-20&linkId=VQZU5EQIQQXCF56Y


Advanced	JS	Fundamentals	to	jQuery	&	Pure	DOM	Scripting	[watch][$]
Douglas	Crockford:	An	Inconvenient	API	-	The	Theory	of	the	DOM	[watch]
DOM	Enlightenment	[read][$]	or	read	online	for	free
Fixing	Common	jQuery	Bugs	[watch][$]
jQuery-Free	JavaScript	[watch][$]
jQuery	Tips	and	Tricks	[watch][$]

References/Docs:

jQuery	Docs
Events
DOM	Browser	Support
DOM	Events	Browser	Support
HTML	Interfaces	Browser	Support
MDN	Document	Object	Model	(DOM)
MDN	Browser	Object	Model
MDN	Document	Object	Model
MDN	Event	reference
MSDN	Document	Object	Model	(DOM)

Standards/Specifications:

Document	Object	Model	(DOM)	Level	3	Events	Specification
Document	Object	Model	(DOM)	Technical	Reports
DOM	Living	Standard
W3C	DOM4

Learn	DOM,	BOM	&	jQuery

69

https://frontendmasters.com/courses/javascript-jquery-dom/
https://www.youtube.com/watch?v=Y2Y0U-2qJMs&list=PL5586336C26BDB324&index=2
http://www.amazon.com/DOM-Enlightenment-Cody-Lindley/dp/1449342841/
http://domenlightenment.com/
http://www.pluralsight.com/courses/fixing-common-jquery-bugs
http://www.pluralsight.com/courses/jquery-free-javascript
http://www.pluralsight.com/courses/jquery-tips-and-tricks
http://api.jquery.com/
https://html.spec.whatwg.org/#events-2
http://www.webbrowsercompatibility.com/dom/desktop/
http://www.webbrowsercompatibility.com/dom-events/desktop/
http://www.webbrowsercompatibility.com/html-interfaces/desktop/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/Events
https://msdn.microsoft.com/en-us/library/hh772384%28v=vs.85%29.aspx
https://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/DOM/DOMTR
https://dom.spec.whatwg.org/
https://www.w3.org/TR/2015/REC-dom-20151119/


Learn	Web	Fonts,	Icons,	&	Images
Web	typography	refers	to	the	use	of	fonts	on	the	World	Wide	Web.	When	HTML	was
first	created,	font	faces	and	styles	were	controlled	exclusively	by	the	settings	of	each
Web	browser.	There	was	no	mechanism	for	individual	Web	pages	to	control	font	display
until	Netscape	introduced	the		<font>		tag	in	1995,	which	was	then	standardized	in	the
HTML	3.2	specification.	However,	the	font	specified	by	the	tag	had	to	be	installed	on	the
user's	computer	or	a	fallback	font,	such	as	a	browser's	default	sans-serif	or	monospace
font,	would	be	used.	The	first	Cascading	Style	Sheets	specification	was	published	in
1996	and	provided	the	same	capabilities.

The	CSS2	specification	was	released	in	1998	and	attempted	to	improve	the	font
selection	process	by	adding	font	matching,	synthesis	and	download.	These	techniques
did	not	gain	much	use,	and	were	removed	in	the	CSS2.1	specification.	However,
Internet	Explorer	added	support	for	the	font	downloading	feature	in	version	4.0,
released	in	1997.	Font	downloading	was	later	included	in	the	CSS3	fonts	module,	and
has	since	been	implemented	in	Safari	3.1,	Opera	10	and	Mozilla	Firefox	3.5.	This	has
subsequently	increased	interest	in	Web	typography,	as	well	as	the	usage	of	font
downloading.

—	Wikipedia

Fonts:

A	Comprehensive	Guide	to	Font	Loading	Strategies	[read]
Beautiful	Web	Type	a	Showcase	of	the	Best	Typefaces	from	the	Google	Web	Fonts
Directory	[read]
Quick	Guide	to	Webfonts	via	@font-face	[read]
MDN:	Web	fonts	[read]
Responsive	Typography	[watch][$]
Typography	for	the	Web	[watch][$]

Icons:

[read]	[watch]

Images:

MDN:	Images	in	HTMLb	[read]
MDN:	Responsive	images	[read]
SVG	ON	THE	WEB	-	A	Practical	Guide	[read]

Learn	Web	Fonts,	Icons,	&	Images

70

https://en.wikipedia.org/wiki/Web_typography
https://www.zachleat.com/web/comprehensive-webfonts/
http://hellohappy.org/beautiful-web-type/
http://www.html5rocks.com/en/tutorials/webfonts/quick/
https://developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Web_fonts
https://frontendmasters.com/courses/responsive-typography/
http://www.pluralsight.com/courses/typography-for-web-1790
https://www.lynda.com/CSS-tutorials/Web-Icons-SVG/502312-2.html
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Images_in_HTML
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://svgontheweb.com/


Learn	Web	Fonts,	Icons,	&	Images

71



Learn	Accessibility
Accessibility	refers	to	the	design	of	products,	devices,	services,	or	environments	for
people	with	disabilities.	The	concept	of	accessible	design	ensures	both	“direct	access”
(i.e.,	unassisted)	and	"indirect	access"	meaning	compatibility	with	a	person's	assistive
technology	(for	example,	computer	screen	readers).

Accessibility	can	be	viewed	as	the	"ability	to	access"	and	benefit	from	some	system	or
entity.	The	concept	focuses	on	enabling	access	for	people	with	disabilities,	or	special
needs,	or	enabling	access	through	the	use	of	assistive	technology;	however,	research
and	development	in	accessibility	brings	benefits	to	everyone.

Accessibility	is	not	to	be	confused	with	usability,	which	is	the	extent	to	which	a	product
(such	as	a	device,	service,	or	environment)	can	be	used	by	specified	users	to	achieve
specified	goals	with	effectiveness,	efficiency	and	satisfaction	in	a	specified	context	of
use.

Accessibility	is	strongly	related	to	universal	design	which	is	the	process	of	creating
products	that	are	usable	by	people	with	the	widest	possible	range	of	abilities,	operating
within	the	widest	possible	range	of	situations.	This	is	about	making	things	accessible	to
all	people	(whether	they	have	a	disability	or	not).

—	Wikipedia

General	Learning:

9	tips	to	get	bare	minimum	of	web	accessibility
Foundations	of	UX:	Accessibility	[watch][$]
How	HTML	elements	are	supported	by	screen	readers	[read]
Introduction	to	Web	Accessibility	-	Google	Open	Online	Education	[watch]
Introduction	to	Web	Accessibility	-	WAI	[read]
Universal	Design	for	Web	Applications:	Web	Applications	That	Reach	Everyone	[read]
[$]
Web	Accessibility:	Getting	Started	[watch][$]
A	Web	for	Everyone	[read][$]
Web	Accessibility	[watch][$]
A11ycasts	[watch]
Accessibility	by	Google	-	Udacity	course	[watch]

Standards/Specifications:

Learn	Accessibility

72

https://en.wikipedia.org/wiki/Accessibility
https://medium.com/@realabhijeet4u/9-tips-to-get-bare-minimum-of-web-accessibility-739899a9437c
http://www.lynda.com/Accessibility-tutorials/Foundations-UX-Accessibility/435008-2.html
http://thepaciellogroup.github.io/AT-browser-tests/?utm_source=html5weekly&utm_medium=email
https://webaccessibility.withgoogle.com/course
https://www.w3.org/WAI/intro/accessibility.php
http://www.amazon.com/Universal-Design-Web-Applications-Everyone/dp/0596518730/ref=sr_1_1
http://www.pluralsight.com/courses/web-accessibility-getting-started
http://rosenfeldmedia.com/books/a-web-for-everyone/
https://frontendmasters.com/workshops/accessibility/
https://www.youtube.com/playlist?list=PLNYkxOF6rcICWx0C9LVWWVqvHlYJyqw7g
https://www.udacity.com/course/web-accessibility--ud891


Accessible	Rich	Internet	Applications	(WAI-ARIA)	Current	Status
Web	Accessibility	Initiative	(WAI)
Web	Content	Accessibility	Guidelines	(WCAG)	Current	Status

Learn	Accessibility

73

http://www.w3.org/standards/techs/aria#w3c_all
http://www.w3.org/WAI/
http://www.w3.org/standards/techs/wcag#w3c_all


Learn	Web/Browser	APIs

Image	source:	http://www.evolutionoftheweb.com/

The	BOM	(Browser	Object	Model)	and	the	DOM	(Document	Object	Model)	are	not	the	only
browser	APIs	that	are	made	available	on	the	web	platform	inside	of	browsers.	Everything
that	is	not	specifically	the	DOM	or	BOM,	but	an	interface	for	programming	the	browser	could
be	considered	a	web	or	browser	API	(tragically	in	the	past	some	of	these	APIs	have	been
called	HTML5	APIs	which	confuses	their	own	specifics/standardize	with	the	actual	HTML5
specification	specifying	the	HTML5	markup	language).	Note	that	web	or	browser	APIs	do
include	device	APIs	(e.g.,		Navigator.getBattery()	)	that	are	available	through	the	browser
on	tablet	and	phones	devices.

You	should	be	aware	of	and	learn,	where	appropriate,	web/browser	APIs.	A	good	tool	to	use
to	familiarize	oneself	with	all	of	these	APIs	would	be	to	investigate	the	HTML5test.com
results	for	the	5	most	current	browsers.

MDN	has	a	great	deal	of	information	about	web/browser	APIs.

Learn	Web/Browser	APIs

74

http://www.evolutionoftheweb.com/
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/getBattery
https://html5test.com/compare/browser/index.html


MDN	Web	API	Reference
MDN	Web	APIs	Interface	Reference	-	All	Interfaces,	Arranged	Alphabetically
MDN	WebAPI	-	Lists	Device	Access	APIs	and	Other	APIs	Useful	for	Applications

Keep	in	mind	that	not	every	API	is	specified	by	the	W3C	or	WHATWG.

In	addition	to	MDN,	you	might	find	the	following	resources	helpful	for	learning	about	all	the
web/browser	API's:

The	HTML	5	JavaScript	API	Index
HTML5	Overview
platform.html5.org

Learn	Web/Browser	APIs

75

https://developer.mozilla.org/en-US/docs/Web/Reference/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/WebAPI
http://html5index.org/
http://html5-overview.net/current
https://platform.html5.org/


Learn	JSON	(JavaScript	Object	Notation)
JSON,	(canonically	pronounced	sometimes	JavaScript	Object	Notation),	is	an	open
standard	format	that	uses	human-readable	text	to	transmit	data	objects	consisting	of
attribute–value	pairs.	It	is	the	primary	data	format	used	for	asynchronous
browser/server	communication	(AJAJ),	largely	replacing	XML	(used	by	AJAX).

Although	originally	derived	from	the	JavaScript	scripting	language,	JSON	is	a	language-
independent	data	format.	Code	for	parsing	and	generating	JSON	data	is	readily
available	in	many	programming	languages.

The	JSON	format	was	originally	specified	by	Douglas	Crockford.	It	is	currently
described	by	two	competing	standards,	RFC	7159	and	ECMA-404.	The	ECMA
standard	is	minimal,	describing	only	the	allowed	grammar	syntax,	whereas	the	RFC
also	provides	some	semantic	and	security	considerations.	The	official	Internet	media
type	for	JSON	is	application/json.	The	JSON	filename	extension	is	.json.

—	Wikipedia

General	Learning:

Introduction	to	JavaScript	Object	Notation:	A	To-the-Point	Guide	to	JSON	[read][$]
json.com	[read]
What	is	JSON	[watch]

References/Docs:

json.org	[read]

Standards/Specifications:

ECMA-404	The	JSON	Data	Interchange	Format
RFC	7159	The	JavaScript	Object	Notation	(JSON)	Data	Interchange	Format
STD	90	-	RFC	8259	-	The	JavaScript	Object	Notation	(JSON)	Data	Interchange	Format,
DECEMBER	2017

Architecting:

JSON	API

NOTES:

Learn	JSON

76

https://en.wikipedia.org/wiki/JSON
https://www.amazon.com/Introduction-JavaScript-Object-Notation-Point/dp/1491929480/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=24e8df4722cb62d086d3f8c87f4e17a1&camp=1789&creative=9325
https://www.json.com/
https://mijingo.com/lessons/what-is-json/
http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/rfc7159
https://www.rfc-editor.org/info/rfc8259
http://jsonapi.org/


JSON	apis	are	being	replaced	by	things	like	GraphQL	and	Falcor.

Learn	JSON

77

http://graphql.org/
http://netflix.github.io/falcor/


Learn	JS	Templates
A	JavaScript	template	is	typically	used,	but	not	always	with	a	MV*	solution	to	separate	parts
of	the	view	(i.e.,	the	UI)	from	the	logic	and	model	(i.e.,	the	data	or	JSON).

ES6	Template	Literals,	the	Handlebars	killer?	[read]
Getting	Started	with	nunjucks	[read]
Instant	Handlebars.js	[read][$]
JavaScript	Templating	with	Handlebars	[watch][$]
Learn	Handlebars	in	10	Minutes	or	Less	[read]
Lodash	Templates	[docs]

NOTES:

Note	that	JavaScript	2015	(aka	ES6)	has	a	native	templating	mechanism	called	"Templates
strings".	Additionally,	templating	as	of	late	has	been	replaced	by	things	like	JSX,	a	template
element,	or	HTML	strings.

ADVICE:

If	I	was	not	using	React	&	JSX	I'd	first	reach	for	JavaScript	"Templates	strings"	and	when
that	was	lacking	move	to	nunjucks.

Learn	JS	Templates

78

http://todomvc.com/
https://www.keithcirkel.co.uk/es6-template-literals/
http://mozilla.github.io/nunjucks/getting-started.html
https://www.amazon.com/Instant-Handlebars-js-Gabriel-Manricks/dp/1783282657/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=ff063868c79e956eb5cbc43571dc7065&camp=1789&creative=9325
http://www.pluralsight.com/courses/handlebars-javascript-templating
http://tutorialzine.com/2015/01/learn-handlebars-in-10-minutes/
https://lodash.com/docs/4.17.2#template
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/template_strings
https://facebook.github.io/jsx/
http://aurelia.io/docs/templating/basics
https://angular.io/docs/ts/latest/guide/template-syntax.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/template_strings
http://mozilla.github.io/nunjucks/getting-started.html


Learn	Static	Site	Generators
Static	site	generators,	typically	written	using	server	side	code	(i.e.,	ruby,	php,	python,
nodeJS,	etc.),	produce	static	HTML	files	from	static	text/data	+	templates	that	are	intended
to	be	sent	from	a	server	to	the	client	statically	without	a	dynamic	nature.

General	Learning:

JAMstack	[read]
Static	Site	Generators	[read]
Working	with	Static	Sites	-	Bringing	the	Power	of	Simplicity	to	Modern	Sites	[read][$]

Learn	Static	Site	Generators

79

https://jamstack.org/
http://www.oreilly.com/web-platform/free/static-site-generators.csp
https://www.amazon.com/Working-Static-Sites-Bringing-Simplicity/dp/1491960949


Learn	Computer	Science	via	JS
Four	Semesters	of	Computer	Science	in	Six	Hours	[video][$]
Computer	Science	in	JavaScript	[read]
Collection	of	classic	computer	science	paradigms,	algorithms,	and	approaches	written
in	JavaScript	[read]
Algorithms	and	Data	Structures	in	JavaScript	[watch][$]

Learn	Computer	Science	via	JS

80

https://frontendmasters.com/workshops/computer-science/
https://github.com/davidshariff/computer-science
https://github.com/nzakas/computer-science-in-javascript
https://frontendmasters.com/workshops/algorithms-data-structures-js/


Learn	Front-End	Application	Architecture
General	Learning:	

JavaScript	Application	Design	[read][$]
Programming	JavaScript	Applications	[read]
Grab	Front	End	Guide	[read]
A	set	of	best	practices	for	JavaScript	projects
Spellbook	of	Modern	Web	Dev
JavaScript	Stack	from	Scratch

Deprecated	Learning	Materials:

Build	an	App	with	React	and	Ampersand	[watch]
Building	Modern	Single-Page	Web	Applications	[watch][$]
Eloquent	JavaScript:	Modules	[read]
Field	Guide	to	Web	Applications	[read]
Frontend	Guidelines	Questionnaire	[read]
Human	JavaScript	[read]
Nicholas	Zakas:	Scalable	JavaScript	Application	Architecture	[watch]
Organizing	JavaScript	Functionality	[watch][$]
Patterns	for	Large-Scale	JavaScript	Application	Architecture	[read]
Terrific	[read]
UI	Architecture	[watch][$]
Web	UI	Architecture	[watch][$]

NOTES:

Not	a	lot	of	general	content	is	being	created	on	this	topic	as	of	late.	Most	of	the	content
offered	for	learning	how	to	build	front-end/SPA/JavaScript	applications	presupposes	you've
decided	up	a	tool	like	Angular,	Ember,	React,	or	Aurelia.

ADVICE:

	In	2018	learn	React	and	Mobx.

1

1

Learn	Front-End	App	Architecture

81

https://www.amazon.com/JavaScript-Application-Design-Build-Approach/dp/1617291951?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=4dd15b53493d3b5148af2b3e5488e98d&camp=1789&creative=9325
http://chimera.labs.oreilly.com/books/1234000000262/index.html
https://github.com/grab/front-end-guide
https://github.com/wearehive/project-guidelines
https://github.com/dexteryy/spellbook-of-modern-webdev
https://github.com/verekia/js-stack-from-scratch
http://learn.humanjavascript.com/react-ampersand
https://frontendmasters.com/courses/modern-web-apps/
http://eloquentjavascript.net/10_modules.html
http://www.html5rocks.com/webappfieldguide/toc/index/
https://github.com/bradfrost/frontend-guidelines-questionnaire
http://read.humanjavascript.com/
https://www.youtube.com/watch?v=vXjVFPosQHw
https://frontendmasters.com/courses/organizing-javascript/
http://addyosmani.com/largescalejavascript/
http://terrifically.org/
http://www.pluralsight.com/courses/web-ui-architecture
https://frontendmasters.com/courses/web-ui-architecture/
https://stateofjs.com/2017/front-end/results
https://facebook.github.io/react/
https://github.com/mobxjs/mobx


Learn	Front-End	App	Architecture

82



Learn	Data	(i.e.	JSON)	API	Design
API	Design	in	Node.js	(using	Express	&	Mongo)	[watch][$]
Build	APIs	You	Won't	Hate	[$][read]
JSON	API	[read]
RESTful	Web	API	Design	with	Node.JS	-	Second	Edition	[$][read]

Learn	Data	API	(i.e.	JSON/REST)	Design

83

https://frontendmasters.com/courses/api-design-nodejs/
http://apisyouwonthate.com/
http://jsonapi.org/
https://www.amazon.com/RESTful-Web-API-Design-Node-JS/dp/1786469138?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=65822660966bb9c5339b4b411ef25d73&camp=1789&creative=9325


Learn	React
Learning	React:

The	Beginner's	Guide	to	ReactJS	[read]
React.js	Introduction	For	People	Who	Know	Just	Enough	jQuery	To	Get	By	[read]
13	things	you	need	to	know	about	React	[read]
Tutorial:	Intro	To	React	[read]
ReactJS	For	Stupid	People	[read]
Complete	Intro	to	React,	v3	(feat.	Redux,	Router	&	Flow)	[watch][$]
React	 	[read]
React	Enlightenment	[read]
REACT	JS	TUTORIAL	#1	-	Reactjs	Javascript	Introduction	&	Workspace	Setup	[watch]

Mastering	React:

Build	Your	First	Production	Quality	React	App	[watch][$]
Advanced	React	Component	Patterns	[watch][$]
React	Patterns	[read]
8	Key	React	Component	Decisions	[read]
React	+	Mobx	codebase	containing	real	world	examples	(CRUD,	auth,	advanced
patterns,	etc)	that	adheres	to	the	RealWorld	spec	and	API.	[code]
An	Introduction	to	React	Router	v4	and	its	Philosophy	Toward	Routing	[read]

NOTES:

Once	you	have	a	good	handle	on	React	move	on	to	learning	a	more	robust	state
management	solution	like	MobX.	If	you	are	an	experienced	developer	with	Functional
Programming	knowledge	look	at	Redux.	If	you	need	help	understanding	the	role	of	state
management	beyond	React's		setState		watch,	"Advanced	State	Management	in	React
(feat.	Redux	and	MobX)".

Note	below	the	trends	in	the	React	Ecosystem	(from	npm	registry)	as	you	move	past	React
and	learn	tools	that	work	alongside	React.

Learn	React

84

https://egghead.io/courses/the-beginner-s-guide-to-reactjs
http://chibicode.com/react-js-introduction-for-people-who-know-just-enough-jquery-to-get-by/
http://aimforsimplicity.com/post/13-things-you-need-to-know-about-react/
https://facebook.github.io/react/tutorial/tutorial.html
http://blog.andrewray.me/reactjs-for-stupid-people/
https://frontendmasters.com/courses/react/
https://react.holiday/
https://www.reactenlightenment.com/
https://www.youtube.com/watch?v=MhkGQAoc7bc&t=6s
https://egghead.io/courses/build-your-first-production-quality-react-app
https://egghead.io/courses/advanced-react-component-patterns
https://reactpatterns.com/
https://medium.freecodecamp.org/8-key-react-component-decisions-cc965db11594
https://github.com/gothinkster/react-mobx-realworld-example-app
https://medium.freecodecamp.org/react-router-v4-philosophy-and-introduction-730fd4fff9bc
https://mobx.js.org/
https://redux.js.org/
https://frontendmasters.com/courses/react-state/


Learn	React

85



Learn	State	Management
State	management	in	JavaScript	[read]
Advanced	State	Management	in	React	(feat.	Redux	and	MobX)	[watch][$]
React	js	tutorial	-	How	Redux	Works	[watch]
MobX	+	React	is	AWESOME	[watch]

Learn	State	Management

86

https://codeburst.io/state-management-in-javascript-15d0d98837e1
https://frontendmasters.com/courses/react-state/
https://www.youtube.com/watch?v=1w-oQ-i1XB8&list=PLoYCgNOIyGADILc3iUJzygCqC8Tt3bRXt
https://www.youtube.com/watch?v=_q50BXqkAfI&t=10s


Learn	Progressive	Web	App
Unlike	traditional	applications,	progressive	web	apps	are	a	hybrid	of	regular	web	pages
(or	websites)	and	a	mobile	application.	This	new	application	model	attempts	to	combine
features	offered	by	most	modern	browsers	with	the	benefits	of	mobile	experience.

In	2015,	designer	Frances	Berriman	and	Google	Chrome	engineer	Alex	Russell	coined
the	term	"Progressive	Web	Apps"	to	describe	apps	taking	advantage	of	new	features
supported	by	modern	browsers,	including	Service	Workers	and	Web	App	Manifests,
that	let	users	upgrade	web	apps	to	be	first-class	applications	in	their	native	OS.

According	to	Google	Developers,	these	characteristics	are:

Progressive	-	Work	for	every	user,	regardless	of	browser	choice	because	they’re
built	with	progressive	enhancement	as	a	core	tenet.
Responsive	-	Fit	any	form	factor:	desktop,	mobile,	tablet,	or	forms	yet	to	emerge.
Connectivity	independent	-	Service	workers	allow	work	offline,	or	on	low	quality
networks.
App-like	-	Feel	like	an	app	to	the	user	with	app-style	interactions	and	navigation.
Fresh	-	Always	up-to-date	thanks	to	the	service	worker	update	process.
Safe	-	Served	via	HTTPS	to	prevent	snooping	and	ensure	content	hasn’t	been
tampered	with.
Discoverable	-	Are	identifiable	as	“applications”	thanks	to	W3C	manifests[6]	and
service	worker	registration	scope	allowing	search	engines	to	find	them.
Re-engageable	-	Make	re-engagement	easy	through	features	like	push
notifications.
Installable	-	Allow	users	to	“keep”	apps	they	find	most	useful	on	their	home	screen
without	the	hassle	of	an	app	store.
Linkable	-	Easily	shared	via	a	URL	and	do	not	require	complex	installation.

—	Wikipedia

A	Beginner’s	Guide	To	Progressive	Web	Apps	[read]
Progressive	Web	Apps	[read]
Getting	Started	with	Progressive	Web	Apps	[watch][$]
Building	a	Progressive	Web	App	[watch][$]
Intro	to	Progressive	Web	Apps	by	Google	[watch]
Native	Apps	are	Doomed	[read]
Why	Native	Apps	Really	are	Doomed:	Native	Apps	are	Doomed	pt	2	[read]
Your	First	Progressive	Web	App	[read]

Learn	Progressive	Web	App

87

https://en.wikipedia.org/wiki/Progressive_web_app
https://www.smashingmagazine.com/2016/08/a-beginners-guide-to-progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://www.pluralsight.com/courses/web-apps-progressive-getting-started
https://www.lynda.com/CSS-tutorials/Building-Progressive-Web-App/518052-2.html
https://www.udacity.com/course/intro-to-progressive-web-apps--ud811
https://medium.com/javascript-scene/native-apps-are-doomed-ac397148a2c0#.rfw9hdym6
https://medium.com/javascript-scene/why-native-apps-really-are-doomed-native-apps-are-doomed-pt-2-e035b43170e9#.qjrm13yj3
https://developers.google.com/web/fundamentals/codelabs/your-first-pwapp/


Progressive	Web	Applications	and	Offline	[watch][$]

Learn	Progressive	Web	App

88

https://frontendmasters.com/workshops/progressive-web-applications/


Learn	JS	API	Design
Designing	Better	JavaScript	APIs	[read]
Writing	JavaScript	APIs	[read]

Learn	JS	API	Design

89

http://www.smashingmagazine.com/2012/10/designing-javascript-apis-usability/
http://blog.wolksoftware.com/writing-javascript-apis


Learn	Web	Developer	Tools
Web	development	tools	allow	web	developers	to	test	and	debug	their	code.	They	are
different	from	website	builders	and	IDEs	in	that	they	do	not	assist	in	the	direct	creation
of	a	webpage,	rather	they	are	tools	used	for	testing	the	user	facing	interface	of	a
website	or	web	application.

Web	development	tools	come	as	browser	add-ons	or	built	in	features	in	web	browsers.
The	most	popular	web	browsers	today	like,	Google	Chrome,	Firefox,	Opera,	Internet
Explorer,	and	Safari	have	built	in	tools	to	help	web	developers,	and	many	additional
add-ons	can	be	found	in	their	respective	plugin	download	centers.

Web	development	tools	allow	developers	to	work	with	a	variety	of	web	technologies,
including	HTML,	CSS,	the	DOM,	JavaScript,	and	other	components	that	are	handled	by
the	web	browser.	Due	to	the	increasing	demand	from	web	browsers	to	do	more	popular
web	browsers	have	included	more	features	geared	for	developers.

—	Wikipedia

While	most	browsers	come	equipped	with	web	developer	tools,	the	Chrome	developer	tools
are	currently	the	most	talked	about	and	widely	used.

I'd	suggest	learning	and	using	the	Chrome	web	developer	tools,	simply	because	the	best
resources	for	learning	web	developer	tools	revolves	around	Chrome	DevTools.

Learn	Chrome	Web	Developer	Tools:

Chrome	Developer	Tools	[watch][$]
Explore	and	Master	Chrome	DevTools	[watch]
Mastering	Chrome	Developer	Tools	[watch][$]
Using	The	Chrome	Developer	Tools	[watch][$]
Learning	Chrome	Web	Developer	Tools	[watch][$]

Chrome	Web	Developer	Tools	Docs:

Command	Line	API	Reference
Keyboard	&	UI	Shortcuts	Reference
Per-Panel	Documentation
Configure	and	Customize	DevTools

News/Newsletters/Podcasts/Tips:

Dev	Tips

Learn	Web	Dev	Tools

90

https://en.wikipedia.org/wiki/Web_development_tools
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
https://code.tutsplus.com/courses/chrome-developer-tools
http://discover-devtools.codeschool.com/
https://frontendmasters.com/courses/chrome-dev-tools/
http://www.pluralsight.com/courses/chrome-developer-tools
https://www.lynda.com/Chrome-tutorials/Learning-Chrome-Web-Developer-Tools/590844-2.html
https://developers.google.com/web/tools/chrome-devtools/console/command-line-reference
https://developers.google.com/web/tools/iterate/inspect-styles/shortcuts
https://developers.google.com/web/tools/chrome-devtools/#docs
https://developer.chrome.com/devtools/docs/settings
https://umaar.com/dev-tips/


Learn	Web	Dev	Tools

91



Learn	Command	Line
A	command-line	interface	or	command	language	interpreter	(CLI),	also	known	as
command-line	user	interface,	console	user	interface,	and	character	user	interface
(CUI),	is	a	means	of	interacting	with	a	computer	program	where	the	user	(or	client)
issues	commands	to	the	program	in	the	form	of	successive	lines	of	text	(command
lines).

—	Wikipedia

General	Learning:

The	Bash	Guide	[read]
Codecademy:	Learn	the	Command	Line	[watch]
Command	Line	Power	User	[watch]
Learn	Enough	Command	Line	to	Be	Dangerous	[read]	[free	to	$]
Meet	the	Command	Line	[watch][$]

Mastering:

Advanced	Command	Line	Techniques	[watch][$]
Introduction	to	Bash,	VIM	&	Regex	[watch][$]

Learn	Command	Line

92

https://en.wikipedia.org/wiki/Command-line_interface
http://guide.bash.academy/
https://www.codecademy.com/courses/learn-the-command-line
http://commandlinepoweruser.com/
http://www.learnenough.com/command-line-tutorial
http://www.pluralsight.com/courses/meet-command-line
https://code.tutsplus.com/courses/advanced-command-line-techniques
https://frontendmasters.com/courses/bash-vim-regex/


Learn	Node.js
Node.js	is	an	open-source,	cross-platform	runtime	environment	for	developing	server-
side	web	applications.	Node.js	applications	are	written	in	JavaScript	and	can	be	run
within	the	Node.js	runtime	on	OS	X,	Microsoft	Windows,	Linux,	FreeBSD,	NonStop,
IBM	AIX,	IBM	System	z	and	IBM	i.	Its	work	is	hosted	and	supported	by	the	Node.js
Foundation,	a	collaborative	project	at	Linux	Foundation.

Node.js	provides	an	event-driven	architecture	and	a	non-blocking	I/O	API	designed	to
optimize	an	application's	throughput	and	scalability	for	real-time	web	applications.	It
uses	Google	V8	JavaScript	engine	to	execute	code,	and	a	large	percentage	of	the
basic	modules	are	written	in	JavaScript.	Node.js	contains	a	built-in	library	to	allow
applications	to	act	as	a	web	server	without	software	such	as	Apache	HTTP	Server,
Nginx	or	IIS.

—	Wikipedia

General	Learning:

The	Art	of	Node	[read]
Introduction	to	Node.js	[watch][$]
Introduction	to	Node.js	from	Evented	Mind	[watch]
io.js	and	Node.js	Next:	Getting	Started	[watch][$]
Learning	Node:	Moving	to	the	Server-Side	[read][$]
Learn	You	The	Node.js	[self-guided	workshops]
Node.js	Basics	[watch][$]
Node.js	in	Practice	[read][$]
Real-time	Web	with	Node.js	[watch]
REST	&	GraphQL	API	Design	in	Node.js,	v2	(using	Express	&	MongoDB)	[watch][$]
Learn	Node	[watch][$]

Learn	Node.js

93

https://en.wikipedia.org/wiki/Node.js
https://github.com/maxogden/art-of-node#the-art-of-node
http://www.pluralsight.com/courses/node-intro
https://www.eventedmind.com/classes/introduction-to-node-js-4c0326de
http://www.pluralsight.com/courses/running-node-applications-io-js
https://www.amazon.com/Learning-Node-Server-Side-Shelley-Powers/dp/1491943122/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=264ce29eb0775f4e8ccb7db892539555&camp=1789&creative=9325
https://github.com/workshopper/learnyounode
http://teamtreehouse.com/library/nodejs-basics
https://www.amazon.com/Node-js-Practice-Alex-R-Young/dp/1617290939/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=e202c01e97ebad79157fab3b59723e94&camp=1789&creative=9325
https://www.codeschool.com/courses/real-time-web-with-node-js
https://frontendmasters.com/courses/api-node-rest-graphql/
https://learnnode.com/


Learn	Modules
General	Learning:

jsmodules.io
ES6	Modules	in	Depth	[read]
Exploring	JS	-	Modules	[read]

References/Docs:

MDN	-	export
MDN	-	import

NOTES:

We	are	still	waiting	on	wide	support	in	browsers	for	loading	modules.	Until	then	you	can
have	a	look	at,	"ES	Module	Loader	Polyfill",	"JavaScript	Loader	Standard",	and	ECMAScript
modules	in	browsers.

Learn	JS	Modules

94

http://jsmodules.io/
https://ponyfoo.com/articles/es6-modules-in-depth
http://exploringjs.com/es6/ch_modules.html#ch_modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://caniuse.com/#feat=es6-module
https://github.com/ModuleLoader/es-module-loader
https://whatwg.github.io/loader/
https://jakearchibald.com/2017/es-modules-in-browsers/


Learn	Module	loaders/bundlers
Webpack:

Webpack	[read]
Webpack	Deep	Dive	[watch][$]
Webpack	Fundamentals	[watch][$]
Survivejs.com	Webpack	Book	[read]

Rollup:

Rollup	[read]
Microbundle

Parcel

Parcel	[read]

NOTES:

It	is	not	uncommon	for	developers	to	use	a	tool	like	Gulp	for	bundling	JS	modules.	However,
many	of	the	Gulp	plugins	simply	use	Webpack	or	Rollup	under	the	hood.

Learn	JS	Module	loaders/bundlers

95

https://webpack.js.org/guides/getting-started/
https://frontendmasters.com/courses/webpack/
http://www.pluralsight.com/courses/webpack-fundamentals
https://survivejs.com/webpack/introduction/
http://rollupjs.org/guide/
https://github.com/developit/microbundle
https://parceljs.org/getting_started.html


Learn	Package	Manager
A	package	manager	or	package	management	system	is	a	collection	of	software	tools
that	automates	the	process	of	installing,	upgrading,	configuring,	and	removing	software
packages	for	a	computer's	operating	system	in	a	consistent	manner.	It	typically
maintains	a	database	of	software	dependencies	and	version	information	to	prevent
software	mismatches	and	missing	prerequisites.

—	Wikipedia

General	Learning:

An	introduction	to	how	JavaScript	package	managers	work
The	Mystical	&	Magical	SemVer	Ranges	Used	By	npm	&	Bower	[read]
Package	Managers:	An	Introductory	Guide	For	The	Uninitiated	Front-End	Developer
[read]
npm	docs
yarn	docs

Learn	Package	Managers

96

https://en.wikipedia.org/wiki/Package_manager
https://medium.freecodecamp.com/javascript-package-managers-101-9afd926add0a#.hu6knvct3
http://developer.telerik.com/featured/mystical-magical-semver-ranges-used-npm-bower/
http://codylindley.com/techpro/2013_04_12__package-managers-an-introducto/
https://docs.npmjs.com/
https://yarnpkg.com/en/docs/


Learn	Version	Control
A	component	of	software	configuration	management,	version	control,	also	known	as
revision	control	or	source	control,	is	the	management	of	changes	to	documents,
computer	programs,	large	web	sites,	and	other	collections	of	information.	Changes	are
usually	identified	by	a	number	or	letter	code,	termed	the	"revision	number,"	"revision
level,"	or	simply	"revision."	For	example,	an	initial	set	of	files	is	"revision	1."	When	the
first	change	is	made,	the	resulting	set	is	"revision	2,"	and	so	on.	Each	revision	is
associated	with	a	timestamp	and	the	person	making	the	change.	Revisions	can	be
compared,	restored,	and	with	some	types	of	files,	merged.

—	Wikipedia

The	most	common	solution	used	for	version	control	today	is	Git.	Learn	it!

General	Learning:

codeschool.com	[interact]
Getting	Git	Right	[read]
Git	Fundamentals	[watch][$]
learn	Enough	Git	[read]
Ry's	Git	Tutorial	[read]

Mastering:

Advanced	Git	Tutorials	[read]
Pro	Git	[read]
Learn	Git	Branching	[interact]

References/Docs:

https://git-scm.com/doc
git-cheatsheet

Learn	Version	Control

97

https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
https://git-scm.com/
https://try.github.io/levels/1/challenges/1
https://www.atlassian.com/git/
http://www.pluralsight.com/courses/git-fundamentals
https://www.learnenough.com/git-tutorial
https://www.amazon.com/Rys-Git-Tutorial-Ryan-Hodson-ebook/dp/B00QFIA5OC
https://www.atlassian.com/git/tutorials/advanced-overview/
http://git-scm.com/book/en/v2
http://learngitbranching.js.org/
https://git-scm.com/docs
https://gist.github.com/eashish93/3eca6a90fef1ea6e586b7ec211ff72a5


Learn	Build	and	Task	Automation
Build	automation	is	the	process	of	automating	the	creation	of	a	software	build	and	the
associated	processes	including:	compiling	computer	source	code	into	binary	code,
packaging	binary	code,	and	running	automated	tests.

—	Wikipedia

General	Learning:

Getting	Started	with	Gulp	[read][$]
Gulp	Basics	[watch][$]
JavaScript	Build	Automation	With	Gulp.js	[watch][$]

References/Docs:

Gulp

ADVICE:

Gulp	is	great.	However,	you	might	only	need		npm	run	.	Before	turning	to	additional
complexity	in	your	application	stack	ask	yourself	if		npm	run		can	do	the	job.	If	you	need
more,	use	Gulp.

Read:

Give	Grunt	the	Boot!	A	Guide	to	Using	npm	as	a	Build	Tool
How	to	Use	npm	as	a	Build	Tool
Task	Automation	with	npm	Run
Using	npm	as	a	Build	System	for	Your	next	Project
Using	npm	as	a	Task	Runner	[watch][$]
Why	I	Left	Gulp	and	Grunt	for	npm	Scripts
Why	npm	Scripts?

Learn	Build	&	Task	Automation

98

https://en.wikipedia.org/wiki/Build_automation
https://www.amazon.com/Getting-Started-Gulp-Travis-Maynard/dp/1784395765?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=3eb1e7a868a09b44f90570c56ef5f53b&camp=1789&creative=9325
http://teamtreehouse.com/library/gulp-basics
http://www.pluralsight.com/courses/javascript-build-automation-gulpjs
https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md
http://www.sitepoint.com/guide-to-npm-as-a-build-tool/
http://blog.keithcirkel.co.uk/how-to-use-npm-as-a-build-tool/
http://substack.net/task_automation_with_npm_run
https://drublic.de/blog/npm-builds
http://teamtreehouse.com/library/using-npm-as-a-task-runner
https://medium.freecodecamp.com/why-i-left-gulp-and-grunt-for-npm-scripts-3d6853dd22b8#.z8plsoxxs
https://css-tricks.com/why-npm-scripts/


Learn	Site	Performance	Optimization
Web	performance	optimization,	WPO,	or	website	optimization	is	the	field	of	knowledge
about	increasing	the	speed	in	which	web	pages	are	downloaded	and	displayed	on	the
user's	web	browser.	With	the	average	internet	speed	increasing	globally,	it	is	fitting	for
website	administrators	and	webmasters	to	consider	the	time	it	takes	for	websites	to
render	for	the	visitor.

—	Wikipedia

General	Learning:

Browser	Rendering	Optimization	[watch]
Even	Faster	Web	Sites:	Performance	Best	Practices	for	Web	Developers	[read][$]
High	Performance	Web	Sites:	Essential	Knowledge	for	Front-End	Engineers	[read][$]
JavaScript	Performance	Rocks	[read][$]
PageSpeed	Insights	Rules	[read]
perf-tooling.today	[read]
Performance	Calendar	[read]
perf.rocks	[read]
Using	WebPageTest	[read][$]
Web	Performance	Daybook	Volume	2	[read][$]
Website	Performance	[watch][$]
Website	Performance	Optimization	[watch]
Front-End	Performance	Checklist	2018	[PDF,	Apple	Pages]	[read]

Learn	Site	Performance	Optimization

99

https://en.wikipedia.org/wiki/Web_performance_optimization
https://www.udacity.com/course/browser-rendering-optimization--ud860
https://www.amazon.com/Even-Faster-Web-Sites-Performance/dp/0596522304?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=4fe6a82bbf727209ba337ecaa0e516bc&camp=1789&creative=9325
https://www.amazon.com/High-Performance-Web-Sites-Essential/dp/0596529309/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=e93ab3ea06b7e3e93ee0d868249d0e3f&camp=1789&creative=9325
http://javascriptrocks.com/
https://developers.google.com/speed/docs/insights/rules
http://www.perf-tooling.today/
http://calendar.perfplanet.com
http://perf.rocks/
https://www.amazon.com/Using-WebPageTest-Rick-Viscomi/dp/1491902590/ref=sr_1_1?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=91a76d5d4b4f47cf4e0d1392cc9cea30&camp=1789&creative=9325
https://www.amazon.com/Web-Performance-Daybook-Techniques-Optimizing/dp/1449332919/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=59e32c394c2377bb17af1d801b924d1d&camp=1789&creative=9325
https://frontendmasters.com/courses/website-performance/
https://www.udacity.com/course/website-performance-optimization--ud884
https://www.smashingmagazine.com/2018/01/front-end-performance-checklist-2018-pdf-pages/


Learn	Testing
Unit	Testing	-	In	computer	programming,	unit	testing	is	a	software	testing	method	by
which	individual	units	of	source	code,	sets	of	one	or	more	computer	program	modules
together	with	associated	control	data,	usage	procedures,	and	operating	procedures,	are
tested	to	determine	whether	they	are	fit	for	use.	Intuitively,	one	can	view	a	unit	as	the
smallest	testable	part	of	an	application.

—	Wikipedia

Functional	Testing	-	Functional	testing	is	a	quality	assurance	(QA)	process	and	a	type
of	black	box	testing	that	bases	its	test	cases	on	the	specifications	of	the	software
component	under	test.	Functions	are	tested	by	feeding	them	input	and	examining	the
output,	and	internal	program	structure	is	rarely	considered	(not	like	in	white-box
testing).	Functional	testing	usually	describes	what	the	system	does.

—	Wikipedia

Integration	Testing	-	Integration	testing	(sometimes	called	integration	and	testing,
abbreviated	I&T)	is	the	phase	in	software	testing	in	which	individual	software	modules
are	combined	and	tested	as	a	group.	It	occurs	after	unit	testing	and	before	validation
testing.	Integration	testing	takes	as	its	input	modules	that	have	been	unit	tested,	groups
them	in	larger	aggregates,	applies	tests	defined	in	an	integration	test	plan	to	those
aggregates,	and	delivers	as	its	output	the	integrated	system	ready	for	system	testing.

—	Wikipedia

General	Learning:

Front-End	First:	Testing	and	Prototyping	JavaScript	Apps	[watch][$]
Let's	Code:	Test-Driven	JavaScript	[watch][$]
JavaScript	Testing	[watch]
JavaScript	Testing	Recipes	[read][$]
Testable	JavaScript	[read][$]
Test-Driving	JavaScript	Applications:	Rapid,	Confident,	Maintainable	Code[read][$]
Test-Driven	JavaScript	Development	[read][$]
The	Way	of	the	Web	Tester:	A	Beginner's	Guide	to	Automating	Tests	[read][$]
Testing	and	Modular	Front-End	[watch][$]
Testing	JavaScript	Applications	(feat.	React	and	Redux)	[watch][$]
Learn	Javascript	Unit	Testing	With	Mocha,	Chai	and	Sinon	[watch][$]

Learn	Testing

100

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Integration_testing
http://www.pluralsight.com/courses/testing-and-prototyping-javascript-apps
http://www.letscodejavascript.com/
https://www.udacity.com/course/javascript-testing--ud549
http://jstesting.jcoglan.com/
https://www.amazon.com/gp/product/1449323391?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=a27df21b09e3eff9ad8033a5c959e7f0&camp=1789&creative=9325
https://www.amazon.com/Test-Driving-JavaScript-Applications-Confident-Maintainable/dp/1680501747?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=c97c9c87e634569328a335cba0b0c15f&camp=1789&creative=9325
https://www.amazon.com/dp/0321683919/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=f707aa5243bf6bac68bda05d1e6369e8&camp=1789&creative=9325
https://www.amazon.com/Way-Web-Tester-Beginners-Automating/dp/1680501836/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=3e2c87950e0350d64c9d9862ed2ef524&camp=1789&creative=9325
https://frontendmasters.com/courses/testing-modular-front-end/
https://frontendmasters.com/courses/testing-javascript/
https://www.udemy.com/learn-javascript-unit-testing-with-mocha-chai-and-sinon/


Learn	Testing

101



Learn	Headless	Browsers
A	headless	browser	is	a	web	browser	without	a	graphical	user	interface.

Headless	browsers	provide	automated	control	of	a	web	page	in	an	environment	similar
to	popular	web	browsers,	but	are	executed	via	a	command	line	interface	or	using
network	communication.	They	are	particularly	useful	for	testing	web	pages	as	they	are
able	to	render	and	understand	HTML	the	same	way	a	browser	would,	including	styling
elements	such	as	page	layout,	color,	font	selection	and	execution	of	JavaScript	and
AJAX	which	are	usually	not	available	when	using	other	testing	methods.	Google	stated
in	2009	that	using	a	headless	browser	could	help	their	search	engine	index	content
from	websites	that	use	AJAX.

—	Wikipedia

Getting	Started	with	Headless	Chrome	[readme]

NOTES:

PhantomJS	is	no	longer	maintained,	Headless	Chrome	steps	in.

Learn	Headless	Browsers

102

https://en.wikipedia.org/wiki/Headless_browser
https://developers.google.com/web/updates/2017/04/headless-chrome
https://www.infoq.com/news/2017/04/Phantomjs-future-uncertain
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md


Learn	Offline	Development
Offline	development	(aka	offline	first)	is	an	area	of	knowledge	and	discussion	around
development	practices	for	devices	that	are	not	always	connected	to	the	Internet	or	a	power
source.

General	Learning:

Creating	HTML5	Offline	Web	Applications	[read]
Everything	You	Need	to	Know	to	Create	Offline-First	Web	Apps	[read]
Offline	First	[read]
offlinefirst.org	[read]
The	Offline	Cookbook	[read]
Offline	Quickstart[read]

Learn	Offline	Dev

103

http://apress.jensimmons.com/v5/pro-html5-programming/ch12.html
https://github.com/pazguille/offline-first
http://www.webdirections.org/offlineworkshop/ibooksDraft.pdf
http://offlinefirst.org
https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook/
https://developers.google.com/web/ilt/pwa/offline-quickstart


Learn	Web/Browser/App	Security
Browser	Security	Handbook	[read]
Frontend	Security	[watch]
Hacksplaining	[read]
HTML5	Security	Cheatsheet	[read]
HTTP	Security	Best	Practice	[read]
Identity	and	Data	Security	for	Web	Development:	Best	Practices	read
Security	for	Web	Developers:	Using	JavaScript,	HTML,	and	CSS	[read][$]
The	Basics	of	Web	Application	Security	[read]
The	Internet:	Encryption	&	Public	Keys	[watch]
The	Internet:	Cybersecurity	&	Crime	[watch]
The	Tangled	Web:	A	Guide	to	Securing	Modern	Web	Applications	[read][$]
Web	Security	Basics	[read]
Web	security	[read]

Learn	Web/Browser/App	Security

104

https://code.google.com/p/browsersec/wiki/Main
https://mikewest.org/2013/09/frontend-security-frontendconf-2013
https://www.hacksplaining.com/
https://html5sec.org
https://httpsecurityreport.com/best_practice.html
https://www.amazon.com/Identity-Data-Security-Web-Development/dp/1491937017?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=f5f2aaa4d5f944a3ccc316a16e3673f4&camp=1789&creative=9325
https://www.amazon.com/Security-Web-Developers-Using-JavaScript/dp/1491928646/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=df49be399d7d1a12acebe5a85637a7a8&camp=1789&creative=9325
http://martinfowler.com/articles/web-security-basics.html
https://www.youtube.com/watch?v=ZghMPWGXexs&list=PLzdnOPI1iJNfMRZm5DDxco3UdsFegvuB7&index=6
https://www.youtube.com/watch?v=AuYNXgO_f3Y&list=PLzdnOPI1iJNfMRZm5DDxco3UdsFegvuB7&index=7
http://lcamtuf.coredump.cx/tangled/
https://github.com/vasanthk/web-security-basics
https://developer.mozilla.org/en-US/docs/Web/Security


Learn	Multi-Device	Development

Image	source:	http://bradfrost.com/blog/post/this-is-the-web/

A	website	or	web	application	can	run	on	a	wide	range	of	computers,	laptops,	tablets	and
phones,	as	well	as	a	handful	of	new	devices	(watches,	thermostats,	fridges,	etc.).	How	you
determine	what	devices	you'll	support	and	how	you	will	develop	to	support	those	devices	is

Learn	Multi-Device	Dev	(e.g.,	RWD)

105

http://bradfrost.com/blog/post/this-is-the-web/


called,	"multi-device	development	strategy".	Below,	I	list	the	most	common	multi-device
development	strategies.

Build	a	responsive	(RWD)	web	site/app	for	all	devices.
Build	an	adaptive/progressively	enhanced	web	site/app	for	all	devices.
Build	a	website,	web	app,	native	app,	or	hybrid-native	app	for	each	individual	device	or
a	grouping	of	devices.
Attempt	to	retrofit	something	you	have	already	built	using	bits	and	parts	from	strategies
1,	2	or	3.

General	Learning:

A	book	Apart	Pack	-	Responsive	Web	Design	[read][$]
A	Book	Apart	Pack	-	Design	For	Any	Device	[read][$]
Adaptive	Web	Design	[read][$]
Designing	with	Progressive	Enhancement	[read][$]
Mobile	Web	Development	[watch]
Responsive	HTML	Email	Design	[watch][$]
Responsive	Images	[watch]
Responsive	Typography	[watch][$]
Responsive	Web	Design	[watch][$]
Responsive	Web	Design	Fundamentals	[watch]

Responsive	Newsletters,	News,	&	Podcasts:

Responsive	Web	Design	Podcast
Responsive	Web	Design	Newsletter

Learn	Multi-Device	Dev	(e.g.,	RWD)

106

https://en.wikipedia.org/wiki/Responsive_web_design
https://en.wikipedia.org/wiki/Adaptive_web_design
https://abookapart.com/collections/responsive-design
https://abookapart.com/collections/design-for-any-device
https://www.amazon.com/gp/product/0134216148?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=defa398e66db76e7edbb8ddfa28caa1e&camp=1789&creative=9325
https://www.amazon.com/Designing-Progressive-Enhancement-Building-Everyone/dp/0321658884/?&_encoding=UTF8&tag=frontend-handbook-20&linkCode=ur2&linkId=bdac6f12a3d24fe694468aa8145001eb&camp=1789&creative=9325
https://www.udacity.com/course/mobile-web-development--cs256
https://frontendmasters.com/courses/responsive-email/
https://www.udacity.com/course/responsive-images--ud882
https://www.pluralsight.com/courses/responsive-typography
https://frontendmasters.com/courses/responsive-web-design/
https://www.udacity.com/course/responsive-web-design-fundamentals--ud893
https://responsivewebdesign.com/podcast/
https://responsivewebdesign.com/newsletter/


Directed	Learning
This	section	focuses	on	directed	learning	via	schools,	courses,	programs	and	bootcamps.

Directed	Learning

107



Directed	Learning
The	table	below	contains	instructor	led,	paid,	front-end	courses,	programs,	schools,	and
bootcamps.

However,	if	you	can't	afford	a	directed	education	(can	be	very	expensive),	a	self	directed
education	using	screencasts,	books,	and	articles	is	a	viable	alternative	to	learn	front-end
development	for	the	self-driven	individual.

company course price on	site remote duration

Betamore Front-end	Web
Development 3,000 Baltimore,

MD
10
weeks

BLOC
Become	a
Frontend
Developer

4,999 yes

16
weeks
@
25hr/wk
or	32
weeks
@
10hr/wk

General
Assembly

Frontend	Web
Development 3,500 multiple

locations

3
hrs/day
2
days/wk
for	8
weeks

HackerYou
Front-end	Web
Development
Immersive

7,000	-
7,910

Toronto,
Canada 9	weeks

The	New	York
Code	+	Design
Academy

Front	End	101 2,000 New
York,	NY

8	weeks
part-time

Thinkful Frontend	Web
Development

300	per
month yes

15
hrs/wk
for	3
months

Turing	School	of
Software	&
Design

Front-End
Engineering 20,000 Denver,

CO

7
months
full	time

Udacity
Front-End	Web
Developer
Nanodegree

200
monthly

multiple
locations yes

6
months
12hrs/wk

Front-End	Schools,	Courses,	&	Bootcamps

108

http://betamore.com/academy/front-end-web-development/
https://www.bloc.io/frontend-development-bootcamp
https://generalassemb.ly/education/front-end-web-development
http://hackeryou.com/front-end-web-development-immersive/
http://nycda.com/classes/front-end-101/
http://www.thinkful.com/courses/learn-web-development-online
https://www.turing.io/programs/front-end-engineering
https://www.udacity.com/course/nd001


NOTES:

For	a	complete	list	of	courses/bootcamps	look	at	switchup.org	or	coursereport.com.

Front-End	Schools,	Courses,	&	Bootcamps

109

https://www.switchup.org/front-end-development
https://www.coursereport.com/tracks/front-end-developer-bootcamps


Front-End	Developers	to	Learn	From
The	notion	that	you	should	follow	an	individual	to	learn	about	front-end	development	is
slowly	becoming	pointless.	The	advanced	practitioners	of	front-end	development	generate
enough	content	that	you	can	simply	follow	the	community/leaders	by	paying	attention	to	the
front-end	"news"	outlets	(via	Newsletters,	News,	&	Podcasts).

Front-End	Devs	to	Learn	From

110



Front-End	Newsletters,	News	Sites,	&
Podcasts
General	Front-End	Newsletters,	News,	&	Podcasts:

The	Big	Web	Show
Dev	Tips
Front	End	Happy	Hour
Front-End	Front
FrontEnd	Focus
The	Frontside	Podcast
Mobile	Web	Weekly
Non	Breaking	Space	Show
Web	Platform	News	Weekly
ShopTalk	Show
UX	Design	Newsletter
The	Versioning	Show	by	SitePoint
The	Web	Ahead
Web	Development	Reading	List
The	Web	Platform	Podcast
Web	Tools	Weekly
Fresh	Brewed	Frontend
Pony	Foo	Weekly

HTML/CSS	Newsletters:

Accessibility	Weekly
CSS	Weekly
CSS-Tricks
csslayout.news

JavaScript	Newsletters,	News,	&	Podcasts:

Awesome	JavaScript	Newsletter
Echo	JS
ECMAScript	Daily
ES.next	News
JavaScript	Jabber
JavaScript	Kicks

Newsletters,	News,	&	Podcasts

111

http://5by5.tv/bigwebshow
https://umaar.com/dev-tips/
http://frontendhappyhour.com/
http://frontendfront.com/
http://frontendfocus.co/
https://frontsidethepodcast.simplecast.fm/
http://mobilewebweekly.co/
http://nonbreakingspace.tv
https://webplatform.news/
http://shoptalkshow.com/
http://uxdesignnewsletter.com/
https://www.sitepoint.com/versioning-show/
http://thewebahead.net/
https://wdrl.info/
http://thewebplatform.libsyn.com/
http://webtoolsweekly.com/
https://freshbrewed.co/frontend/
https://ponyfoo.com/weekly
http://a11yweekly.com/
http://css-weekly.com/archives/
https://css-tricks.com/newsletters/
http://csslayout.news/
https://js.libhunt.com/
http://www.echojs.com/
https://ecmascript-daily.github.io/
http://esnextnews.com/
https://devchat.tv/js-jabber/
http://javascriptkicks.com/


JavaScript	Live
JavaScript	Weekly
JavaScript.com
JSter
React	Status

Graphic	and	Animation	Newsletters	and	Podcasts

Motion	and	Meaning
Responsive	Images	Community	Group	Newsletter
SVG	Immersion	Podcast
Web	Animation	Weekly

NOTES:

Need	more	Newsletters,	News	Sites,	&	Podcasts	look	at	Awesome	Newsletter.

Newsletters,	News,	&	Podcasts

112

https://jslive.com/
http://javascriptweekly.com/
https://www.javascript.com/news
http://jster.net/blog
https://react.statuscode.com/
http://motionandmeaning.io/
https://responsiveimages.org/#newsletter
http://svgimmersion.com/
http://webanimationweekly.com/
https://github.com/vredniy/awesome-newsletters


Part	III:	Front-end	Developer	Tools
Part	three	briefly	explains	and	identifies	tools	of	the	trade.

Make	sure	you	understanding	the	category	that	a	set	of	tools	falls	within,	before	studying	the
tools	themselves.

Note	that	just	because	a	tool	is	listed,	or	a	category	of	tools	is	documented,	this	does	not
equate	to	an	assertion	on	my	part	that	a	front-end	developer	should	learn	it	and	use	it.
Choose	your	own	toolbox.	I'm	just	providing	the	common	toolbox	options.

Image	source:	https://medium.com/@withinsight1/the-front-end-spectrum-c0f30998c9f0

Part	III:	Front-End	Dev	Tools

113

https://medium.com/@withinsight1/the-front-end-spectrum-c0f30998c9f0


Doc/API	Browsing	Tools
Tools	to	browser	common	developer	documents	and	developer	API	references.

Dash	[OS	X,	iOS][$]
DevDocs
Velocity	[Windows][$]
Zeal	[Windows,	Linux]

Cheatsheets:

devhints.io

Doc/API	Browsing	Tools

114

https://kapeli.com/dash
http://devdocs.io/
https://velocity.silverlakesoftware.com/
https://zealdocs.org/
https://devhints.io


SEO	Tools
Keyword	Tool
Google	Webmasters	Search	Console
Varvy	SEO	tool

Tools	for	Finding	SEO	Tools:

SEO	Tools	-	The	Complete	List

SEO	Tools

115

http://keywordtool.io/
https://www.google.com/webmasters/
https://varvy.com/tools/
http://backlinko.com/seo-tools


Prototyping	&	Wireframing	Tools
Creating:

Axure	[$]
Balsamiq	Mockups	[$]
Justinmind	[$]
Moqups	[$]
proto.io	[$]
UXPin	[free	to	$]

Collaboration	/	Presenting:

InVision	[free	to	$]
Conceptboard	[free	to	$]
myBalsamiq	[$]

Prototyping	&	Wireframing	Tools

116

http://www.axure.com/
https://balsamiq.com
http://www.justinmind.com/
https://moqups.com/
https://proto.io/
http://www.uxpin.com/
http://www.invisionapp.com/
https://conceptboard.com/
https://balsamiq.cloud/


Diagramming	Tools
draw.io	[free	to	$]
Cacoo	[free	to	$]
gliffy	[free	to	$]
sketchboard.io	[$]

Diagramming	Tools

117

https://www.draw.io/
https://cacoo.com
https://www.gliffy.com/products/online/
https://sketchboard.io


HTTP/Network	Tools
Charles	[$]
Chrome	DevTools	Network	Panel
Insomnia	[free	-	$]
Mitmproxy	[free]
Paw	[$]
Postman	[free	-	$]

HTTP/Network	Tools

118

http://www.charlesproxy.com/
https://developers.google.com/web/tools/chrome-devtools/profile/network-performance/resource-loading
https://insomnia.rest/
https://mitmproxy.org/
https://paw.cloud/
https://www.getpostman.com/


Code	Editing	Tools
A	source	code	editor	is	a	text	editor	program	designed	specifically	for	editing	source
code	of	computer	programs	by	programmers.	It	may	be	a	standalone	application	or	it
may	be	built	into	an	integrated	development	environment	(IDE)	or	web	browser.	Source
code	editors	are	the	most	fundamental	programming	tool,	as	the	fundamental	job	of
programmers	is	to	write	and	edit	source	code.

—	Wikipedia

Front-end	code	can	minimally	be	edited	with	a	simple	text	editing	application	like	Notepad	or
TextEdit.	But,	most	front-end	practitioners	use	a	code	editor	specifically	design	for	editing	a
programming	language.

Code	editors	come	in	all	sorts	of	types	and	size,	so	to	speak.	Selecting	one	is	a	rather
subjective	engagement.	Choose	one,	learn	it	inside	and	out,	then	get	on	to	learning	HTML,
CSS,	DOM,	and	JavaScript.

However,	I	do	strongly	believe,	minimally,	a	code	editor	should	have	the	following	qualities
(by	default	or	by	way	of	plugins):

1.	 Good	documentation	on	how	to	use	the	editor
2.	 Report	(i.e.,	hinting/linting/errors)	on	the	code	quality	of	HTML,	CSS,	and	JavaScript.
3.	 Offer	syntax	highlighting	for	HTML,	CSS,	and	JavaScript.
4.	 Offer	code	completion	for	HTML,	CSS,	and	JavaScript.
5.	 Be	customizable	by	way	of	a	plug-in	architecture
6.	 Have	available	a	large	repository	of	third-party/community	plug-ins	that	can	be	used	to

customize	the	editor	to	your	liking
7.	 Be	small,	simple,	and	not	coupled	to	the	code	(i.e.,	not	required	to	edit	the	code)

Code	Editors:	

Atom
Sublime	Text	[$]
WebStorm	[$]
Visual	Studio	Code

Online	Code	Editors:

PaizaCloud	[free	to	$]
AWS	Cloud9	[$]
Codeanywhere	[free	to	$]

1

Code	Editing	Tools

119

https://en.wikipedia.org/wiki/Source_code_editor
https://atom.io/
http://www.sublimetext.com/
https://www.jetbrains.com/webstorm/whatsnew/
https://code.visualstudio.com/
https://paiza.cloud
https://aws.amazon.com/cloud9/
https://codeanywhere.com


Shareable	&	Runnable	Code	Editors:

Used	to	share	limited	amounts	of	immediately	runnable	code.	Not	a	true	code	editor	but	a
tool	that	can	be	used	to	share	small	amounts	of	immediately	runnable	code	in	a	web
browser.

CodePen	[free	to	$]
jsbin.com	[free	to	$]
jsfiddle.net
StackBliz
codeSandbox

ADVICE:

	I	recommending	using	Visual	Studio	Code	because	of	the	quality	of	the	tool	and	the
continuous	improvements	made	to	the	editor	that	likely	won't	stop	or	slow	due	to	the	fact	that
Microsoft	is	behind	the	tool.	It	is	widely	used:

Image	source:	https://stateofjs.com/2017/other-tools/

1

Code	Editing	Tools

120

http://codepen.io/
http://jsbin.com/
http://jsfiddle.net/
https://stackblitz.com/
https://codesandbox.io/
https://code.visualstudio.com/
https://stateofjs.com/2017/other-tools/p


Browser	Tools
JS	Utilities	to	fix	Browsers:

History.js
html2canvas
Platform.js
URI.js

General	Reference	Tools	to	Determine	If	X	Browser	Supports	X:

Browser	support	for	broken/missing	images
Browserscope
caniuse.com
Firefox	Platform	Status	-	Implementation	&	standardization	roadmap	for	web	platform
features
HTML5	Please
HTML5	Test
iwanttouse.com
Platform	Status
web-platform-tests	dashboard
whatwebcando.today

Browser	Development/Debug	Tools:

Chrome	Developer	Tools	(aka	DevTools)
Per-Panel	Documentation
Command	Line	API	Reference
Keyboard	&	UI	Shortcuts	Reference
Settings

Firefox	Developer	Tools
IE	Developer	tools	(aka	F12	tools)
Safari	Web	Inspector
Vorlon.js

JavaScript	Utilities	to	Determine	If	X	Browser	Supports	X:

Feature.js
Modernizr

Broad	Browser	Polyfills/Shims:

Browser	Tools

121

https://github.com/browserstate/history.js
https://github.com/niklasvh/html2canvas
https://github.com/bestiejs/platform.js
http://medialize.github.io/URI.js/
http://codepen.io/bartveneman/full/qzCte/
http://www.browserscope.org/
http://caniuse.com/
https://platform-status.mozilla.org/
http://html5please.com/
https://html5test.com/
http://www.iwanttouse.com/
https://dev.modern.ie/platform/status/
https://wpt.fyi/
https://whatwebcando.today/
https://developers.google.com/web/tools/?hl=en
https://developers.google.com/web/tools/chrome-devtools/#docs
https://developers.google.com/web/tools/javascript/command-line/command-line-reference?hl=en
https://developers.google.com/web/tools/iterate/inspect-styles/shortcuts
https://developer.chrome.com/devtools/docs/settings
https://developer.mozilla.org/en-US/docs/Tools
https://dev.modern.ie/platform/documentation/f12-devtools-guide/
https://developer.apple.com/safari/tools/
http://vorlonjs.com/
http://featurejs.com/
https://modernizr.com/


console-polyfill
HTML5	Cross	Browser	Polyfills
fetch
socket.io
SockJS
webcomponents.js
webshim

Hosted	Testing/Automation	for	Browsers:

Browserling	[free	to	$]
BrowserStack	[$]
CrossBrowserTesting.com	[$]
Ghost	Inspector	[free	to	$]
Nightcloud.io
Sauce	Labs	[$]

Headless	Browsers:

PhantomJS
PhantomCSS

slimerjs
Zombie.js
Headless	Chromium

Browser	Automation:

Used	for	functional	testing	and	monkey	testing.

CasperJS
Nightmare
TestCafe

Browser	Hacks:

browserhacks.com

Browser	Syncing	Tools:

Browsersync

Browser	List:

Share	target	browsers	between	different	front-end	tools,	like	Autoprefixer,	Stylelint	and
babel-preset-env.

Browser	Tools

122

https://github.com/paulmillr/console-polyfill
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/github/fetch
http://socket.io/
https://github.com/sockjs/sockjs-client
https://github.com/WebComponents/webcomponentsjs
https://afarkas.github.io/webshim/demos/
https://www.browserling.com/
https://www.browserstack.com
http://crossbrowsertesting.com/
https://ghostinspector.com
http://nightcloud.io/
https://saucelabs.com/
http://phantomjs.org/
https://github.com/Huddle/PhantomCSS
http://slimerjs.org/
http://zombie.js.org/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
http://casperjs.org/
https://github.com/segmentio/nightmare
https://github.com/DevExpress/testcafe
http://browserhacks.com/
http://www.browsersync.io/


Browserslist
http://browserl.ist/

Browser	Tools

123

https://github.com/ai/browserslist
http://browserl.ist/?q=%3E+2%25


HTML	Tools
HTML	Templates/Boilerplates/Starter	Kits:

dCodes
Email-Boilerplate
HTML5	Boilerplate
HTML5	Bones
Mobile	boilerplate

HTML	Polyfill:

html5shiv

Transpiling:

Pug
Markdown

References:

Element	attributes
Elements
HTML	Arrows
HTML	Entity	Lookup
htmlreference.io
HEAD	-	A	free	guide	to	elements

Linting/Hinting:

HTMLHint
html-inspector

Optimizer:

HTML	Minifier

Online	Creation/Generation/Experimentation	Tools:

tablesgenerator.com

Authoring	Conventions:

HTML	Code	Guide

HTML	Tools

124

http://www.dcodes.net/2/docs/index.html
https://github.com/seanpowell/Email-Boilerplate
https://html5boilerplate.com/
http://html5bones.com/
https://html5boilerplate.com/mobile/
https://github.com/aFarkas/html5shiv
https://pugjs.org/api/getting-started.html
http://daringfireball.net/projects/markdown/
https://html.spec.whatwg.org/multipage/indices.html#attributes-3
https://html.spec.whatwg.org/multipage/indices.html#elements-3
http://htmlarrows.com/
http://entity-lookup.leftlogic.com/
http://htmlreference.io/
https://gethead.info/
http://htmlhint.com/
https://github.com/philipwalton/html-inspector
http://kangax.github.io/html-minifier/
http://www.tablesgenerator.com/
http://codeguide.co/#html


Principles	of	Writing	Consistent,	Idiomatic	HTML

Workflow:

Emmet

HTML	Outliner:

HTML	5	Outliner

Trending	HTML	Repositories	on	GitHub	This	Month:

https://github.com/trending?l=html&since=monthly

HTML	Tools

125

https://github.com/necolas/idiomatic-html
http://emmet.io/
https://gsnedders.html5.org/outliner/
https://github.com/trending?l=html&since=monthly


CSS	Tools
CSS	Utilities:

Basscss
Skeleton
Shed
Tailwind	CSS
Tachyons

CSS	Frameworks	(utilities	+	UI):

Base
Bulma
Bootstrap	4
Concise
Foundation
Material	Design	Lite	(MDL)
Metro	UI
Mini.css
Mobi.css
Picnic
Pure.css
Semantic	UI
Shoelace
Spectre.css

Mobile	Only	CSS	Frameworks:

Ratchet

CSS	Reset:

A	CSS	Reset	(or	“Reset	CSS”)	is	a	short,	often	compressed	(minified)	set	of	CSS	rules
that	resets	the	styling	of	all	HTML	elements	to	a	consistent	baseline.

—	cssreset.com

Eric	Meyer's	“Reset	CSS”	2.0
Normalize
sanitize.css

CSS	Tools

126

https://css-tricks.com/need-css-utility-library/
http://basscss.com/
http://getskeleton.com/
http://tedconf.github.io/shed-css/
https://tailwindcss.com/
https://github.com/tachyons-css/tachyons/
http://getbase.org/
http://bulma.io/
https://v4-alpha.getbootstrap.com/
http://concisecss.com/
http://foundation.zurb.com/
http://www.getmdl.io/index.html
http://metroui.org.ua/
https://minicss.org/
http://getmobicss.com/
http://picnicss.com/
http://purecss.io/
http://semantic-ui.com/
https://shoelace.style/
https://picturepan2.github.io/spectre/
http://goratchet.com/
http://cssreset.com/what-is-a-css-reset/
http://meyerweb.com/eric/tools/css/reset/
https://necolas.github.io/normalize.css/
https://github.com/jonathantneal/sanitize.css


Transpiling:

pleeease.io
PostCSS	&	cssnext
rework	&	myth

References:

CSS	Cursors
css3test.com
css3clickchart.com
cssreference.io
CSS	Indexes	-	A	listing	of	every	term	defined	by	CSS	specs
css4-selectors.com
css4	Rocks
CSS	TRIGGERS...A	GAME	OF	LAYOUT,	PAINT,	AND	COMPOSITE
CSS	Tricks	Almanac
cssvalues.com
MDN	CSS	Reference
CSS	Cheat	Sheet

Linting/Hinting:

CSS	Lint
stylelint

Code	Formatter/Beautifier:

CSScomb
CSSfmt

Optimizer:

clear-css
cssnano
CSSO
purgecss

Online	Creation/Generation/Experimentation	Tools:

CSS	Arrow	Please
CSS	Matic
Enjoy	CSS
Flexbox	Playground

CSS	Tools

127

http://pleeease.io/
https://github.com/postcss/postcss
http://cssnext.io/
https://github.com/reworkcss/rework
http://www.myth.io/
http://csscursor.info/
http://css3test.com/
http://css3clickchart.com/
http://cssreference.io/
https://drafts.csswg.org/indexes/
http://css4-selectors.com/
http://css4.rocks/
http://csstriggers.com/
https://css-tricks.com/almanac/
http://cssvalues.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://adam-marsden.co.uk/css-cheat-sheet/
http://csslint.net/
http://stylelint.io/
https://github.com/csscomb/csscomb.js
https://github.com/morishitter/cssfmt
https://github.com/jakubpawlowicz/clean-css
http://cssnano.co/
http://css.github.io/csso/
https://github.com/FullHuman/purgecss
http://cssarrowplease.com/
http://www.cssmatic.com/
http://enjoycss.com/
https://scotch.io/demos/visual-guide-to-css3-flexbox-flexbox-playground


flexplorer
patternify.com
patternizer.com
Ultimate	CSS	Gradient	Generator

Architecting	CSS:

Atomic	Design	[read]
BEM
ITCSS
OOCSS	[read]
SMACSS	[read][$]

Scalable	Modular	Architecture	for	CSS	(SMACSS)	[watch][$]
SUIT	CSS
rscss

Authoring/Architecting	Conventions:

CSS	code	guide	[read]
css-architecture	[read]
cssguidelin.es	[read]
Idiomatic	CSS	[read]
MaintainableCSS	[read]
Standards	for	Developing	Flexible,	Durable,	and	Sustainable	HTML	and	CSS	[read]
Airbnb	CSS	/	Sass	Styleguide	[read]

Style	Guide	Resources:

Frontify	[$]
SC5	STYLE	GUIDE	GENERATOR
styleguide-generators
Catalog

Trending	CSS	Repositories	on	GitHub	This	Month:

https://github.com/trending?l=css&since=monthly

CSS	Tools

128

http://bennettfeely.com/flexplorer/
http://patternify.com
http://patternizer.com/
http://www.colorzilla.com/gradient-editor/
http://atomicdesign.bradfrost.com/
http://getbem.com/introduction/
https://www.xfive.co/blog/itcss-scalable-maintainable-css-architecture/
http://oocss.org/
https://smacss.com/
https://frontendmasters.com/courses/smacss/
http://suitcss.github.io
http://rscss.io/
http://codeguide.co/#css
https://github.com/jareware/css-architecture
http://cssguidelin.es/
https://github.com/necolas/idiomatic-css
http://maintainablecss.com/
http://mdo.github.io/code-guide/
https://github.com/airbnb/css
https://frontify.com/
http://styleguide.sc5.io/
https://github.com/davidhund/styleguide-generators
https://docs.catalog.style/
https://github.com/trending?l=css&since=monthly


DOM	Tools
DOM	Libraries/Frameworks:

Bliss
jQuery

You	Don't	Need	jQuery
Zepto
cash
Umbrella	JS

DOM	Utilities:

Keypress
Tether
clipboard.js

DOM	Event	Tools:

Keyboard	Event	Viewer

DOM	Performance	Tools:

Chrome	DevTools	Timeline
DOM	Monster

References:

Events
DOM	Browser	Support
DOM	Events	Browser	Support
HTML	Interfaces	Browser	Support
MDN	Document	Object	Model	(DOM)
MDN	Browser	Object	Model
MDN	Document	Object	Model
MDN	Event	reference
MSDN	Document	Object	Model	(DOM)

DOM	Polyfills/Shims:

dom-shims
Pointer	Events	Polyfill:	a	unified	event	system	for	the	web	platform

DOM	Tools

129

http://blissfuljs.com/docs.html
http://jquery.com/
https://github.com/oneuijs/You-Dont-Need-jQuery
http://zeptojs.com/
https://github.com/kenwheeler/cash/
http://umbrellajs.com/
http://dmauro.github.io/Keypress/
http://tether.io/docs/welcome/
http://zenorocha.github.io/clipboard.js/
http://w3c.github.io/uievents/tools/key-event-viewer.html
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/timeline-tool
http://mir.aculo.us/dom-monster/
https://html.spec.whatwg.org/#events-2
http://www.webbrowsercompatibility.com/dom/desktop/
http://www.webbrowsercompatibility.com/dom-events/desktop/
http://www.webbrowsercompatibility.com/html-interfaces/desktop/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/Events
https://msdn.microsoft.com/en-us/library/hh772384%28v=vs.85%29.aspx
https://github.com/necolas/dom-shims
https://github.com/jquery/PEP


Virtual	DOM:

jsdom
virtual-dom

DOM	Tools

130

https://github.com/tmpvar/jsdom
https://github.com/Matt-Esch/virtual-dom


JavaScript	Tools
JS	Utilities:

accounting.js
async
axios
chance
date-fns
format.js
immutable
is.js
lodash

You-Dont-Need-Lodash-Underscore
Luxon
Math.js
Moment.js
Numeral.js
Ramda
RxJS
string.js
voca
wait
xregexp.com

Transpiling	/	Type	Checking	(ES	to	ES):

Babel
TypeScript
Flow

Code-analysis	Engine:

Tern

Linting/Hinting	&	Style	Linter:

eslint

Unit	Testing:

JavaScript	Tools

131

http://openexchangerates.github.io/accounting.js/
http://caolan.github.io/async/
https://github.com/mzabriskie/axios
http://chancejs.com/
https://date-fns.org/
http://formatjs.io/
https://facebook.github.io/immutable-js/
http://arasatasaygin.github.io/is.js/
https://lodash.com/
https://github.com/you-dont-need/You-Dont-Need-Lodash-Underscore
https://moment.github.io/luxon/
http://mathjs.org/
http://momentjs.com/
http://numeraljs.com/
http://ramdajs.com/
http://reactivex.io/rxjs/
http://stringjs.com/
https://vocajs.com/
https://github.com/elving/wait
http://xregexp.com/
https://babeljs.io/
https://www.typescriptlang.org/
https://flowtype.org/
https://ternjs.net/
http://eslint.org/


AVA
Jasmine
Mocha
Tape

Testing	Assertions	for	Unit	Testing:

Chai
expect.js
should.js

Test	Spies,	Stubs,	and	Mocks	for	Unit	Testing:

sinon.js
Kakapo.js

Code	Formater/Beautifier:

esformatter
js-beautify
jsfmt
prettier

Performance	Testing:

benchmark.js
jsperf.com

Visualization,	Static	Analysis,	Complexity,	Coverage	Tools:

Coveralls	[$]
Esprima
istanbul

Optimizer:

Closure	Compiler
UglifyJS	2
optimize-js
Prepack

Obfuscate:

Javascript	Obfuscator	[free	to	$]
JScrambler	[$]

JavaScript	Tools

132

https://github.com/avajs/ava
http://jasmine.github.io/
http://mochajs.org/
https://github.com/substack/tape
http://chaijs.com/
https://github.com/Automattic/expect.js
http://shouldjs.github.io/
http://sinonjs.org/
http://devlucky.github.io/kakapo-js
https://github.com/millermedeiros/esformatter#esformatterformatstr-optsstring
http://jsbeautifier.org/
http://rdio.github.io/jsfmt/
https://github.com/jlongster/prettier
http://benchmarkjs.com/
https://jsperf.com/
https://coveralls.io/
http://esprima.org/
https://github.com/gotwarlost/istanbul
https://developers.google.com/closure/compiler/
https://github.com/mishoo/UglifyJS2
https://github.com/nolanlawson/optimize-js
https://prepack.io/
http://www.javascriptobfuscator.com/
https://jscrambler.com/


Sharable/Runnable	Code	Editors:

jsbin.com	[free	to	$]
jsfiddle.net

Online	Regular	Expression	Editors/Visual	Tools:

debuggex
regex101
regexper
RegExr

Authoring	Convention	Tools:

Airbnb's	ESLint	config,	following	our	styleguide
Standard	-	ESLint	Shareable	Config

Trending	JS	Repositories	on	GitHub	This	Month:

https://github.com/trending?l=javascript&since=monthly

Most	Depended	upon	Packages	on	NPM:

https://www.npmjs.com/browse/depended

JavaScript	Tools

133

http://jsbin.com/
http://jsfiddle.net/
https://www.debuggex.com
https://regex101.com/
http://regexper.com/
http://regexr.com/
https://www.npmjs.com/package/eslint-config-airbnb
https://github.com/feross/eslint-config-standard
https://github.com/trending?l=javascript&since=monthly
https://www.npmjs.com/browse/depended


Static	Site	Generators	Tools
Site	Generator	Listings:	

staticgen.com
staticsitegenerators.net
Metalsmith

ADVICE:

	Before	using	a	static	site	generator	framework	consider	using	Gulp	or	npm	scripts	to
orchestrate	a	custom	solution	or	use	a	tool	that	makes	use	of	Gulp	for	static	site	generation.
e.g.	Blendid

1

1

Static	Site	Generators	Tools

134

https://www.staticgen.com/
https://staticsitegenerators.net/
http://www.metalsmith.io/
http://gulpjs.com/
https://scotch.io/tutorials/using-npm-as-a-build-tool
https://github.com/vigetlabs/blendid


Accessibility	Tools

Guides
A11Y	Style	Guide
Accessibility	Guidelines	Checklist
Interactive	WCAG	2.0
18F	Accessibility	Guide

Site	Scanners
aXe	Browser	Extension
Chrome	Accessibility	Developer	Tools
Tenon	Accessibility	Tool
WAVE	Accessibility	Tool

Color	Contrast	Testers
Colorable
Colorable	Matrix
Color	Safe
Color	Ratio

Low-Vision	Simulators
SEE	(Chrome)
Spectrum	(Chrome)
NoCoffee	(Chrome)

Screen	Readers
VoiceOver	(Mac)
JAWS	(Win)
NVDA	(Win)
Window-Eyes	(Win)

Accessibility	Dev	Tools

135

http://a11y-style-guide.com/style-guide/
http://accessibility.voxmedia.com
http://code.viget.com/interactive-wcag/
https://pages.18f.gov/accessibility/checklist/
http://www.deque.com/products/axe/
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://tenon.io
http://wave.webaim.org
http://jxnblk.com/colorable/demos/text/
http://jxnblk.com/colorable/demos/matrix/
http://colorsafe.co
http://leaverou.github.io/contrast-ratio/
https://chrome.google.com/webstore/detail/see/dkihcccbkkakkbpikjmpnbamkgbjfdcn
https://chrome.google.com/webstore/detail/spectrum/ofclemegkcmilinpcimpjkfhjfgmhieb
https://chrome.google.com/webstore/detail/nocoffee/jjeeggmbnhckmgdhmgdckeigabjfbddl
http://www.apple.com/accessibility/
http://www.freedomscientific.com/Products/Blindness/JAWS
https://www.nvaccess.org
https://www.aisquared.com/products/window-eyes/


ChromeVox	(Chrome	extension)
Basic	screen	reader	commands

Readability	Testers
Expresso	App
Hemingway	App
Grammarly
Readability	Score
MS	Office

Articles
Getting	Started	with	ARIA
Reframing	Accessibility	for	the	Web
An	Alphabet	of	Accessibility	Issues
Practical	ARIA	Examples
MDN	Accessibility	Guide
Enable	accessibility	panel	in	Chrome	dev	tools

Accessibility	Dev	Tools

136

http://www.chromevox.com
https://www.paciellogroup.com/blog/2015/01/basic-screen-reader-commands-for-accessibility-testing/
http://www.expresso-app.org
http://www.hemingwayapp.com
https://www.grammarly.com
https://readability-score.com/text/
https://support.office.com/en-us/article/Test-your-document-s-readability-0adc0e9a-b3fb-4bde-85f4-c9e88926c6aa
http://a11yproject.com/posts/getting-started-aria/
http://alistapart.com/article/reframing-accessibility-for-the-web
https://the-pastry-box-project.net/anne-gibson/2014-July-31
http://heydonworks.com/practical_aria_examples/
https://developer.mozilla.org/en-US/docs/Learn/Accessibility
https://umaar.com/dev-tips/101-accessibility-inspection/


App	Frameworks	(Desktop,	Mobile,	Tablet,
etc.)	Tools
Front-End	App	Frameworks:	

AngularJS	(i.e	Angular	1.x.x)	+	Batarang
Angular	(i.e.	Angular	2.0.0	+)	+	angular-cli
Aurelia	+	Aurelia	CLI
Ember	+	embercli	+	Ember	Inspector
Polymer
React	+	create-react-app	+	React	Developer	Tools
Vue.js	+	vue-cli	&	Vue.js	devtools
Riot

Native	Hybrid	Mobile	WebView	(i.e.,	Browser	Engine	Driven)	Frameworks:

These	solutions	typically	use	Cordova,	crosswalk,	or	a	custom	WebView	as	a	bridge	to
native	APIs.

ionic
onsen.io

Native	Hybrid	Mobile	Development	Webview	(i.e.,	Browser	Engine	Driven)
Environments/Platforms/Tools:

These	solutions	typically	use	Cordova,	crosswalk,	or	a	custom	WebView	as	a	bridge	to
native	APIs.

Adobe	PhoneGap	[$]
cocoon.io	[free	to	$]
ionic	hub	[free	to	$]
kony	[$]
Monaca	[$]

Native	Desktop	WebView	(i.e.,	Browser	Engine	Driven)	App	Frameworks:

Electron
NW.js

Native	Mobile	App	Frameworks	(Aka	JavaScript	Native	Apps)

1

App	Frameworks	(Desktop,	Mobile	etc.)	Tools

137

https://github.com/angular/angular.js
https://github.com/angular/angularjs-batarang
https://github.com/angular/angular
https://github.com/angular/angular-cli
http://aurelia.io/
https://github.com/aurelia/cli
http://emberjs.com/
https://ember-cli.com/
https://chrome.google.com/webstore/detail/ember-inspector/bmdblncegkenkacieihfhpjfppoconhi?hl=en
https://www.polymer-project.org/1.0/
http://facebook.github.io/react/
https://github.com/facebookincubator/create-react-app
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
http://vuejs.org/
https://github.com/vuejs/vue-cli
https://chrome.google.com/webstore/detail/vuejs-devtools/nhdogjmejiglipccpnnnanhbledajbpd?hl=en
http://riotjs.com/
https://cordova.apache.org/
https://crosswalk-project.org/
http://ionicframework.com/
http://onsen.io/
https://cordova.apache.org/
https://crosswalk-project.org/
http://phonegap.com/
https://cocoon.io
http://ionic.io/
http://www.kony.com/products/mobility-platform
https://monaca.io/
http://electron.atom.io/
https://github.com/nwjs/nw.js


These	solutions	use	a	JS	engine	at	runtime	to	interpret	JS	and	bridge	that	to	native	APIs.	No
browser	engine	or	WebView	is	used.	The	UI	is	constructed	from	native	UI	components.

Flutter
NativeScript
React	Native
tabris.js	[free	to	$]
trigger.io	[$]
weex

References	&	demo	apps:

todomvc.com
RealWorld	example	apps	[code]
Frontend	Guidelines	Questionnaire
Frontend	Guidelines

Performance:

js-framework-benchmark
Front-End	Performance	Checklist	2018

ADVICE:

	If	you	are	new	to	front-end/JavaScript	application	development	I'd	start	with	Vue.js.	Then
I'd	work	my	way	to	React.	Then	I'd	look	at	Angular	2+,	Ember,	or	Aurelia.

If	you	are	building	a	simple	website	that	has	minimal	interactions	with	data	(i.e.	mostly	a
static	content	web	site),	you	should	avoid	a	front-end	framework.	A	lot	of	work	can	be	done
with	a	task	runner	like	Gulp	and	jQuery,	while	avoiding	the	unnecessary	complexity	of
learning	and	using	an	app	framework	tool.

Want	something	smaller	than	React,	consider	Preact.	Preact	is	an	attempt	to	recreate	the
core	value	proposition	of	React	(or	similar	libraries	like	Mithril)	using	as	little	code	as
possible,	with	first-class	support	for	ES2015.	Currently	the	library	is	around	3kb	(minified	&
gzipped).

1

App	Frameworks	(Desktop,	Mobile	etc.)	Tools

138

https://flutter.io/
https://www.nativescript.org/
https://facebook.github.io/react-native/
https://tabrisjs.com/
https://trigger.io/how-it-works/
https://weex.apache.org/
http://todomvc.com/
https://github.com/gothinkster/realworld
https://github.com/bradfrost/frontend-guidelines-questionnaire
https://github.com/bendc/frontend-guidelines
https://github.com/krausest/js-framework-benchmark
https://www.dropbox.com/s/8h9lo8ee65oo9y1/front-end-performance-checklist-2018.pdf?dl=0
http://vuejs.org/
http://facebook.github.io/react/
https://angular.io/
http://emberjs.com/
http://aurelia.io/
https://github.com/vigetlabs/blendid
https://preactjs.com/


State	Tools
Redux
Mobx
mobx-state-tree
Cerebral
freactal
unistore

State	Management	Tools

139

https://redux.js.org/
https://mobx.js.org/
https://github.com/mobxjs/mobx-state-tree
https://github.com/cerebral/cerebral
https://github.com/FormidableLabs/freactal
https://github.com/developit/unistore


Progressive	Web	App	Tools:
lighthouse
Progressive	Web	App	Checklist

Progressive	Web	App	Tools

140

https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/progressive-web-apps/checklist


GUI	Development/Build	Tools
CodeKit
Prepros

GUI	Development/Build	Tools

141

http://incident57.com/codekit/
https://prepros.io/


Templating/Data	Binding	Tools
Just	Templating:

doT.js
art-template
Nunjuncks

Templating	and	Reactive	Data	Binding:

ractive.js
react.js

preact
inferno
nerv
rax

riot
Rivets.js
vue.js

Templating	to	Virtual	DOM:

JSX

Templating/Data	Binding	Tools

142

http://olado.github.io/doT/
https://aui.github.io/art-template/
http://mozilla.github.io/nunjucks/
https://ractive.js.org/
https://facebook.github.io/react/index.html
https://preactjs.com/
https://infernojs.org/
https://github.com/NervJS/nerv
https://github.com/alibaba/rax
http://riotjs.com/
http://rivetsjs.com/
http://vuejs.org/
https://facebook.github.io/jsx/


UI	Widget	&	Component	Toolkits
On	Web	Platform:	

Kendo	UI	for	jQuery	[free	to	$]
Materialize
Office	UI	Fabric
Semantic	UI
UiKit
Webix	[$]

React	Specific,	On	Web	Platform:

Ant	Design
Material	ui
Semantic-UI-React
ExtReact	[$]
Fabric

Native	Desktop/Laptop/Netbook	Apps	via	Web	Platform	(i.e.	used	with	NW.js	and
Electron):

Photon
React	UI	Components	for	OS	X	El	Capitan	and	Windows	10

ADVICE:

	If	you	need	a	basic	set	of	UI	Widgets/Components	start	with	Semantic	UI.	If	you	are
building	something	that	needs	a	grid,	spreadsheet,	or	pivot	grid	you'll	have	to	look	at	Kendo
UI	or	Webix.	Keep	in	mind	that	most	of	these	solutions	still	require	jQuery.

1

1

UI	Widget	&	Component	Toolkits

143

http://www.telerik.com/kendo-ui
http://materializecss.com/
http://dev.office.com/fabric
http://semantic-ui.com/
https://getuikit.com/
http://webix.com/
https://ant.design/
http://material-ui.com/
http://react.semantic-ui.com/introduction
https://www.sencha.com/products/extreact/#app
https://developer.microsoft.com/en-us/fabric
http://photonkit.com/
http://gabrielbull.github.io/react-desktop/
http://semantic-ui.com/
http://www.telerik.com/kendo-ui
http://webix.com/


Data	Visualization	(e.g.,	Charts)	Tools
JS	Libraries:

d3
sigmajs

Widgets	&	Components:

amCharts	[free	to	$]
AnyChart	[Non-commercial	free	to	$]
C3.js
Chartist-jsj
Chart.js
Epoch
FusionCharts	[$]
Google	Charts
Highcharts	[Non-commercial	free	to	$]
ZingChart	[free	to	$]

Services	(i.e.	hosted	data	visualization	services	for	embedding	and	sharing):

ChartBlocks	[free	to	$]
Datawrapper
infogr.am	[free	to	$]
plotly	[free	to	$]

Data	Visualization	(e.g.,	Charts)	Tools

144

http://d3js.org/
http://sigmajs.org/
http://www.amcharts.com/
http://www.anychart.com/
http://c3js.org/
https://github.com/gionkunz/chartist-js
http://www.chartjs.org/
http://epochjs.github.io/epoch/
http://www.fusioncharts.com/
https://developers.google.com/chart/interactive/docs/
http://www.highcharts.com/
http://www.zingchart.com/
http://www.chartblocks.com/
https://datawrapper.de/
https://infogr.am
https://plot.ly/


Graphics	(e.g.,	SVG,	canvas,	webgl)	Tools
General:

Fabric.js
Two.js

Canvas:

EaselJS
Paper.js

SVG:

d3
GraphicsJS
Raphaël
Snap.svg
svg.js

WebGL:

pixi.js
three.js

Graphics	(e.g.,	SVG,	canvas,	webgl)	Tools

145

http://fabricjs.com/
http://jonobr1.github.io/two.js/#introduction
https://github.com/CreateJS/EaselJS
http://paperjs.org/
http://d3js.org/
http://www.graphicsjs.org/
http://dmitrybaranovskiy.github.io/raphael/
http://snapsvg.io/
http://svgjs.com/
https://github.com/pixijs/pixi.js
http://threejs.org/


Animation	Tools
CSS	and	JavaScript	Utilities:

Animate	Plus
Animate
Anime.js
Animista.net
Dynamics.js
GreenSock-JS
Kute.js
Magic
Micron.js
Motion
TweenJS
Popmotion
Velocity.js

Polyfills/Shims:

web-animations-js

Animation	References:

canianimate.com

Animation	Tools

146

https://github.com/bendc/animateplus
https://github.com/daneden/animate.css
http://animejs.com/
http://animista.net/
http://dynamicsjs.com/
http://greensock.com/
http://thednp.github.io/kute.js/
https://github.com/miniMAC/magic
https://webkul.github.io/micron/
http://mojs.io/
https://github.com/CreateJS/TweenJS
https://popmotion.io
http://julian.com/research/velocity/
https://github.com/web-animations/web-animations-js
http://canianimate.com/


JSON	Tools
Online	Editors:

JSONmate
JSON	Editor	Online

Formatter	&	Validator:

jsonformatter.org
JSON	Formatter	&	Validator

Query	Tools:

DefiantJS
JSON	Mask
ObjectPath

Generating	Mock	JSON	Tools:

JSON	Generator
Mockaroo	[free	to	$]

Online	JSON	Mocking	API	Tools:

FillText.com
FakeJSON	[free	to	$]
Jam	API
JSONPlaceholder
jsonbin.io
jsonbin.org
mockable.io
mockapi.io
Mocky
RANDOM	USER	GENERATOR

List	of	public	JSON	API's:

A	collective	list	of	JSON	APIs	for	use	in	web	development

Local	JSON	Mocking	API	Tools:

json-server

JSON	Tools

147

http://jsonmate.com/
https://jsoneditoronline.org/
http://jsonformatter.org/
https://jsonformatter.curiousconcept.com/
http://www.defiantjs.com/
https://github.com/nemtsov/json-mask
http://objectpath.org/
http://www.json-generator.com/
https://www.mockaroo.com/
http://www.filltext.com/
https://fakejson.com
https://github.com/dinubs/jam-api
http://jsonplaceholder.typicode.com/
https://jsonbin.io
https://jsonbin.org/
https://www.mockable.io/
http://www.mockapi.io/
http://www.mocky.io/
https://randomuser.me/
https://github.com/toddmotto/public-apis
https://github.com/typicode/json-server


JSON	Specifications/Schemas:

json-schema.org	&	jsonschema.net
{json:api}

JSON	Tools

148

http://json-schema.org/
http://jsonschema.net/
http://jsonapi.org/


Placeholder	Content	Tools

Images:
placehold.it
Satyr
Placeimg
Lorem	Pixel
CSS-Tricks	Image	Resources
LibreStock
Unsplash
Place	Beyoncé

Device	Mockups:
placeit.net
mockuphone.com

Text:
Meet	the	Ipsums
catipsum.com
baconipsum.com	(API)

User	Data:
uinames.com
randomuser.me

Placeholder	Images/Text	Tools

149

http://placehold.it
http://satyr.io
http://placeimg.com
http://lorempixel.com
https://css-tricks.com/sites-with-high-quality-photos-you-can-use-for-free/
http://librestock.com
https://unsplash.it
http://placebeyonce.com
https://placeit.net
http://mockuphone.com
http://meettheipsums.com
http://www.catipsum.com/
http://baconipsum.com/
http://baconipsum.com/json-api/
https://uinames.com
https://randomuser.me


Testing	Tools
Software	Testing	Frameworks:

Intern
Jest

majestic
Enzyme
Cheerio

Unit	Testing:

AVA
Jasmine
Mocha
Tape

Testing	Assertions	for	Unit	Testing:

Chai
expect.js
should.js

Test	Spies,	Stubs,	and	Mocks	for	Unit	Testing:

sinon.js
Kakapo.js

Hosted	Testing/Automation	for	Browsers:

Browserling	[$]
BrowserStack	[$]
CrossBrowserTesting.com	[$]
Nightcloud.io
Sauce	Labs	[$]

Integration/Functional	Testing:

Cypress	cypress-react-unit-test
Nightwatch
WebDriver.io

Testing	Tools

150

https://theintern.github.io/
http://facebook.github.io/jest/
https://majestic.debuggable.io/
https://github.com/airbnb/enzyme
https://github.com/cheeriojs/cheerio
https://github.com/avajs/ava
http://jasmine.github.io/
http://mochajs.org/
https://github.com/substack/tape
http://chaijs.com/
https://github.com/Automattic/expect.js
http://shouldjs.github.io/
http://sinonjs.org/
http://devlucky.github.io/kakapo-js
https://www.browserling.com/
https://www.browserstack.com
http://crossbrowsertesting.com/
http://nightcloud.io/
https://saucelabs.com/
https://www.cypress.io/
https://github.com/bahmutov/cypress-react-unit-test
http://nightwatchjs.org/
http://webdriver.io/


Browser	Automation:

CasperJS
Nightmare
TestCafe

UI	Testing	Tools:

gremlins.js
Percy
BackstopJS
PhantomCSS
Ghost	Inspector
diff.io

Automated	dead	link	and	error	detectors:

Monkey	Test	It

NOTES:

Testing	frameworks	typically	offer	more	tools	than	just	unit	testing.	If	you	are	looking	for
JavaScript	unit	testing	solutions	look	at	JavaScript	Tools.

Nice	recap	of	testing	JavaScript	in	2017.

Testing	Tools

151

http://casperjs.org/
https://github.com/segmentio/nightmare
https://github.com/DevExpress/testcafe
https://github.com/marmelab/gremlins.js
https://percy.io
https://github.com/garris/BackstopJS
https://github.com/Huddle/PhantomCSS
https://ghostinspector.com/
https://diff.io/
https://monkeytest.it/
https://frontendmasters.gitbooks.io/front-end-handbook-2017/content/tools/js.html
https://medium.com/powtoon-engineering/a-complete-guide-to-testing-javascript-in-2017-a217b4cd5a2a


Front-End	Data	Storage	Tools	(i.e.	Data
storage	solution	in	the	client)

AlaSQL
Dexie.js
LocalForage
LokiJS
Lovefield
lowdb
Pouchdb
NeDB
RxDB

Front-end	Data	Storage	Tools

152

http://alasql.org/
http://www.dexie.org/
https://localforage.github.io/localForage/
http://lokijs.org/#/
https://google.github.io/lovefield
https://github.com/typicode/lowdb
http://pouchdb.com/
https://github.com/louischatriot/nedb
https://pubkey.github.io/rxdb/install.html


Module	Loading/Bundling	Tools
Parcel
Rollup

Microbundle
webpack

http://www.webpackbin.com/
Fusebox
Browserify

Notes:

Generally,	when	should	I	use	Parcel,	Webpack	or	Rollup?

Parcel — Small	to	medium	sized	projects	(<15k	lines	of	code)

Webpack — Large	to	enterprise	sized	projects.

Rollup — For	NPM	packages.

Module/Package	Loading	Tools

153

https://parceljs.org/
http://rollupjs.org/
https://github.com/developit/microbundle
https://webpack.js.org/
http://www.webpackbin.com/
https://fuse-box.org/
http://browserify.org/


Module/Package	Repository	Tools
NPM
yarn
PNPM

NOTES:

Keep	an	eye	on	turbo.

Module/Package	Repo.	Tools

154

https://www.npmjs.com/
https://yarnpkg.com/
https://pnpm.js.org/
https://medium.com/@ericsimons/introducing-turbo-5x-faster-than-yarn-npm-and-runs-natively-in-browser-cc2c39715403


Hosting	Tools
General

AWS	[$]
DigitalOcean	[$]
WebFaction	[$]

Static

Firebase	Hosting
netlify	[free	to	$]

Bitballoon
Surge	[free	to	$]
Forge	[$]

Local	Hosting	Tools:

Localname

Hosting	Tools

155

https://aws.amazon.com/websites/
https://digitalocean.com
https://www.webfaction.com/
https://firebase.google.com/docs/hosting/
https://www.netlify.com
https://www.bitballoon.com/
https://surge.sh/
https://getforge.com/
https://localname.io


Project	Management	&	Code	Hosting	Tools
Assembla	[free	to	$]
Bitbucket	[free	to	$]
Codebase	[$]
Github	[free	to	$]
GitLab	[free	to	$]
Unfuddle	[$]

Project	Management	&	Code	Hosting

156

https://www.assembla.com
https://bitbucket.org
https://www.codebasehq.com/
https://github.com/
https://about.gitlab.com/
https://unfuddle.com/


Collaboration	&	Communication	Tools
Slack	&	screenhero	[free	to	$]
appear.in
Mattermost	[free	to	$]

Code/GitHub	Collaboration	&	Communication:

Gitter	[free	to	$]

Collaboration	&	Communication	Tools

157

https://slack.com/
https://screenhero.com/
https://appear.in/
https://mattermost.org/
https://gitter.im


Content	Management	Hosted/API	Tools
Headless	CMS	Tools:

Contentful	[$]
prismic.io	[free	to	$]
Headless

Self-hosted	Headless	CMS	Tools:

Cockpit

Hosted	CMS:

LightCMS	[$]
Surreal	CMS	[$]

Static	CMS	Tools:

webhook.com
Dato	CMS
siteleaf
forestry.io

CMS	Hosted/API	Tools

158

https://www.contentful.com/
https://prismic.io/
https://www.headless.rest/
https://getcockpit.com/
https://www.lightcms.com
http://www.surrealcms.com/
http://www.webhook.com/
https://www.datocms.com/
https://www.siteleaf.com/
https://forestry.io/


Back-end/API	tools
Data/back-end	as	a	service	aka	BAAS:

Back&	[free	to	$]
Backendless
Firebase	[free	to	$]
Pusher	[free	to	$]
restdb.io	[free	to	$]
MongoDB	Stitch

Data/back-end

GraphQL
Apollo
Relay

Falcor
RxDB

User	Management	as	a	Service:

Auth0	[$]
AuthRocket
Okta

Search

Algolia

BAAS	(for	Front-End	Devs)	Tools

159

https://www.backand.com/
https://backendless.com
https://www.firebase.com/index.html
https://pusher.com/
https://restdb.io/
https://www.mongodb.com/cloud/stitch
http://graphql.org/
http://www.apollodata.com/
https://facebook.github.io/relay/
https://netflix.github.io/falcor/
https://github.com/pubkey/rxdb
https://auth0.com
https://authrocket.com
https://developer.okta.com/
https://www.algolia.com


Offline	Tools
Hoodie
Offline.js
PouchDB
upup

NOTES:

For	more	tools	look	here.

Offline	Tools

160

http://hood.ie/
http://github.hubspot.com/offline/docs/welcome/
http://pouchdb.com/
https://www.talater.com/upup/
https://github.com/pazguille/offline-first#tools


Security	Tools
Coding	Tool:

DOMPurify
XSS

Security	Scanners/Evaluators/Testers:

Netsparker
Websecurify
OWASP	ZAP

References:

HTML5	Security	Cheatsheet

Security	Tools

161

https://github.com/cure53/DOMPurify
http://jsxss.com/en/index.html
https://www.netsparker.com
http://www.websecurify.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://html5sec.org/


Tasking	(aka	Build)	Tools
Tasking/Build	Tools:	

Gulp

Opinionated	Tasking/Build	pipeline	tools:

Brunch

ADVICE:

	Before	reaching	for	Gulp	make	sure	npm	scripts	or	yarn	script	won't	fit	the	bill.	Read,	"Why
I	Left	Gulp	and	Grunt	for	npm	Scripts".

1

1

Tasking	(aka	Build)	Tools

162

http://gulpjs.com/
http://brunch.io/
https://docs.npmjs.com/misc/scripts
https://yarnpkg.com/en/docs/package-json#toc-scripts
https://medium.freecodecamp.com/why-i-left-gulp-and-grunt-for-npm-scripts-3d6853dd22b8#.nw3huib54


Deployment	Tools
Bamboo	[$]
Buddy	[free	to	$]
CircleCI	[free	to	$]
Codeship	[free	to	$]
Deploybot	[free	to	$]
Deployhq	[free	to	$]
FTPLOY	[free	to	$]
Now	[free	to	$]
Travis	CI	[free	to	$]
Semaphore	[free	to	$]
Springloops	[free	to	$]

Deployment	Tools

163

https://www.atlassian.com/software/bamboo/
https://buddy.works/
https://circleci.com/
https://codeship.com/
https://deploybot.com/
https://www.deployhq.com/
http://ftploy.com/
https://zeit.co/now
http://docs.travis-ci.com/
https://semaphoreci.com/
http://www.springloops.io/


Site/App	Monitoring	Tools
Uptime	Monitoring:

Monitority	[free]
Uptime	Robot	[free	to	$]

General	Monitoring	Tools:

Pingdom	[free	to	$]
New	Relic
Uptrends	[$]

Site/App	Monitoring	Tools

164

http://monitority.com/
https://uptimerobot.com/
https://www.pingdom.com/
http://newrelic.com/
https://www.uptrends.com/


JavaScript	Error	Reporting/Monitoring
bugsnag	[$]
errorception	[$]
Honeybadger	[$]
Raygun	[$]
Rollbar	[free	to	$]
Sentry	[free	to	$]
TrackJS	[$]

JS	Error	Monitoring	Tools

165

https://bugsnag.com/
https://errorception.com/
https://www.honeybadger.io
https://raygun.io
https://rollbar.com
https://getsentry.com/welcome/
https://trackjs.com/


Performance	Tools
Reporting:

bundlephobia.com
GTmetrix
sitespeed.io
Speed	Curve	[$]
Web	Page	Test
Sonarwhal
Datadog	[$]

JS	Tools:

imagemin
ImageOptim-CLI

Budgeting:

performancebudget.io

References/Docs:

Jank	Free
Performance	of	ES6	features	relative	to	the	ES5

Checklist:

The	Front-End	Checklist
Front-End	Performance	Checklist	2018

Performance	Tools

166

https://bundlephobia.com/
https://gtmetrix.com/
https://www.sitespeed.io
https://speedcurve.com/
http://www.webpagetest.org/
https://sonarwhal.com
https://www.datadoghq.com
https://github.com/imagemin/imagemin
http://jamiemason.github.io/ImageOptim-CLI/
http://www.performancebudget.io/
http://jankfree.org/
https://kpdecker.github.io/six-speed/
https://frontendchecklist.io/
https://www.dropbox.com/s/8h9lo8ee65oo9y1/front-end-performance-checklist-2018.pdf?dl=0


Tools	for	Finding	Tools
built	with
frontendtools.com
javascripting.com
js.coach
JSter
microjs.com
npms
stackshare.io
Unheap
bestof.js.org

Tools	for	Finding	Tools

167

http://builtwith.com/
http://frontendtools.com/
http://www.javascripting.com
https://js.coach/
http://jster.net
http://microjs.com
https://npms.io/
http://stackshare.io/
http://www.unheap.com/
https://bestof.js.org/


Sponsored	by	Frontend	Masters

168

https://frontendmasters.com/

	Introduction
	What Is a Front-End Developer?
	Recap of Front-end Dev in 2017
	In 2018 expect...
	Part I: The Front-End Practice
	Front-End Jobs Titles
	Common Web Tech Employed
	Front-End Dev Skills
	Front-End Devs Develop For...
	Front-End on a Team
	Generalist/Full-Stack Myth
	Front-End interview questions
	Front-End Job Boards
	Front-End Salaries
	How FDs Are Made

	Part II: Learning Front-End Dev
	Self Directed Learning
	Learn Internet/Web
	Learn Web Browsers
	Learn DNS
	Learn HTTP/Networks
	Learn Web Hosting
	Learn General Front-End Dev
	Learn UI/Interaction Design
	Learn HTML & CSS
	Learn SEO
	Learn JavaScript
	Learn Web Animation
	Learn DOM, BOM & jQuery
	Learn Web Fonts, Icons, & Images
	Learn Accessibility
	Learn Web/Browser APIs
	Learn JSON
	Learn JS Templates
	Learn Static Site Generators
	Learn Computer Science via JS
	Learn Front-End App Architecture
	Learn Data API (i.e. JSON/REST) Design
	Learn React
	Learn State Management
	Learn Progressive Web App
	Learn JS API Design
	Learn Web Dev Tools
	Learn Command Line
	Learn Node.js
	Learn JS Modules
	Learn JS Module loaders/bundlers
	Learn Package Managers
	Learn Version Control
	Learn Build & Task Automation
	Learn Site Performance Optimization
	Learn Testing
	Learn Headless Browsers
	Learn Offline Dev
	Learn Web/Browser/App Security
	Learn Multi-Device Dev (e.g., RWD)

	Directed Learning
	Front-End Schools, Courses, & Bootcamps

	Front-End Devs to Learn From
	Newsletters, News, & Podcasts

	Part III: Front-End Dev Tools
	Doc/API Browsing Tools
	SEO Tools
	Prototyping & Wireframing Tools
	Diagramming Tools
	HTTP/Network Tools
	Code Editing Tools
	Browser Tools
	HTML Tools
	CSS Tools
	DOM Tools
	JavaScript Tools
	Static Site Generators Tools
	Accessibility Dev Tools
	App Frameworks (Desktop, Mobile etc.) Tools
	State Management Tools
	Progressive Web App Tools
	GUI Development/Build Tools
	Templating/Data Binding Tools
	UI Widget & Component Toolkits
	Data Visualization (e.g., Charts) Tools
	Graphics (e.g., SVG, canvas, webgl) Tools
	Animation Tools
	JSON Tools
	Placeholder Images/Text Tools
	Testing Tools
	Front-end Data Storage Tools
	Module/Package Loading Tools
	Module/Package Repo. Tools
	Hosting Tools
	Project Management & Code Hosting
	Collaboration & Communication Tools
	CMS Hosted/API Tools
	BAAS (for Front-End Devs) Tools
	Offline Tools
	Security Tools
	Tasking (aka Build) Tools
	Deployment Tools
	Site/App Monitoring Tools
	JS Error Monitoring Tools
	Performance Tools
	Tools for Finding Tools

	Sponsored by Frontend Masters

